Select all the correct answers.

Which expressions are equivalent to the given expression?

[tex]\[ \sqrt{80} \][/tex]

A. [tex]\( 80^{\frac{1}{2}} \)[/tex]
B. [tex]\( 8 \sqrt{5} \)[/tex]
C. [tex]\( 4 \sqrt{10} \)[/tex]
D. [tex]\( 4 \sqrt{5} \)[/tex]
E. [tex]\( 160^{\frac{1}{2}} \)[/tex]



Answer :

Certainly! Let's simplify the given expression and compare it to each of the provided options.

Given Expression:

[tex]\[ \sqrt{80} \][/tex]

First, simplify the given expression [tex]\(\sqrt{80}\)[/tex].

[tex]\[ \sqrt{80} = \sqrt{16 \cdot 5} = \sqrt{16} \cdot \sqrt{5} = 4 \cdot \sqrt{5} \][/tex]

So, the simplified form of the given expression is:

[tex]\[ \sqrt{80} = 4 \sqrt{5} \][/tex]

Now, let's compare this to the provided options:

1. Option 1: [tex]\(80^{\frac{1}{2}}\)[/tex]

[tex]\[ 80^{\frac{1}{2}} = \sqrt{80} \][/tex]

As noted before, [tex]\(\sqrt{80} = 4 \sqrt{5}\)[/tex]. Thus, [tex]\(80^{\frac{1}{2}}\)[/tex] simplifies to [tex]\(4 \sqrt{5}\)[/tex].

2. Option 2: [tex]\(8 \sqrt{5}\)[/tex]

This expression clearly is not simplified to the same form as [tex]\(4 \sqrt{5}\)[/tex].

3. Option 3: [tex]\(4 \sqrt{10}\)[/tex]

This expression is in a different form and cannot be simplified to match [tex]\(4 \sqrt{5}\)[/tex].

4. Option 4: [tex]\(4 \sqrt{5}\)[/tex]

This expression directly matches [tex]\(4 \sqrt{5}\)[/tex].

5. Option 5: [tex]\(160^{\frac{1}{2}}\)[/tex]

[tex]\[ 160^{\frac{1}{2}} = \sqrt{160} \][/tex]
But [tex]\(\sqrt{160} = \sqrt{16 \cdot 10} = \sqrt{16} \cdot \sqrt{10} = 4 \cdot \sqrt{10} \)[/tex], which does not match [tex]\(4 \sqrt{5}\)[/tex].

Conclusion:

The expressions equivalent to [tex]\(\sqrt{80}\)[/tex] are:

[tex]\[ \boxed{80^{\frac{1}{2}}, 4 \sqrt{5}} \][/tex]

Hence, the correct options are:

[tex]\[ \boxed{80^{\frac{1}{2}}, 4 \sqrt{5}} \][/tex]

Therefore, the selected correct answers are:
- [tex]\( 80^{\frac{1}{2}} \)[/tex]
- [tex]\( 4 \sqrt{5} \)[/tex]