Solve the inequality. Be sure to simplify your answer.

[tex]\[
\left|\frac{1}{2} x - 6\right| \ \textless \ \frac{3}{2}
\][/tex]

[tex]\[
? \ \textless \ x \ \textless \ \square
\][/tex]



Answer :

To solve the inequality [tex]\(\left|\frac{1}{2} x - 6\right| < \frac{3}{2}\)[/tex], we need to understand that the absolute value inequality [tex]\(|A| < B\)[/tex] can be rewritten as two separate inequalities:

[tex]\[ -B < A < B \][/tex]

Here, [tex]\(A\)[/tex] is [tex]\(\frac{1}{2} x - 6\)[/tex] and [tex]\(B\)[/tex] is [tex]\(\frac{3}{2}\)[/tex]. So, we can rewrite our inequality as:

[tex]\[ -\frac{3}{2} < \frac{1}{2} x - 6 < \frac{3}{2} \][/tex]

Now, we solve these two inequalities separately.

### Solving [tex]\(-\frac{3}{2} < \frac{1}{2} x - 6\)[/tex]

1. Add 6 to both sides to isolate the term with [tex]\(x\)[/tex]:

[tex]\[ -\frac{3}{2} + 6 < \frac{1}{2} x \][/tex]

2. Convert [tex]\(6\)[/tex] to a fraction with the same denominator:

[tex]\[ -\frac{3}{2} + \frac{12}{2} < \frac{1}{2} x \][/tex]

3. Simplify the left side:

[tex]\[ \frac{9}{2} < \frac{1}{2} x \][/tex]

4. Multiply both sides by 2 to solve for [tex]\(x\)[/tex]:

[tex]\[ 9 < x \quad \text{or} \quad x > 9 \][/tex]

### Solving [tex]\(\frac{1}{2} x - 6 < \frac{3}{2}\)[/tex]

1. Add 6 to both sides to isolate the term with [tex]\(x\)[/tex]:

[tex]\[ \frac{1}{2} x - 6 + 6 < \frac{3}{2} + 6 \][/tex]

2. Convert [tex]\(6\)[/tex] to a fraction with the same denominator:

[tex]\[ \frac{1}{2} x < \frac{3}{2} + \frac{12}{2} \][/tex]

3. Simplify the right side:

[tex]\[ \frac{1}{2} x < \frac{15}{2} \][/tex]

4. Multiply both sides by 2 to solve for [tex]\(x\)[/tex]:

[tex]\[ x < 15 \][/tex]

### Combining the Two Inequalities

Now we combine the results from the two separate inequalities:

[tex]\[ 9 < x < 15 \][/tex]

Thus, the solution to the inequality [tex]\(\left|\frac{1}{2} x - 6\right| < \frac{3}{2}\)[/tex] is:

[tex]\[ \boxed{9 < x < 15} \][/tex]