In pea plants, the allele for tall plants [tex]$(T)$[/tex] is dominant over the allele for short plants [tex]$(t)$[/tex]. The allele for purple flowers [tex][tex]$(P)$[/tex][/tex] is dominant over the allele for white flowers [tex]$(p)$[/tex]. Two plants that are heterozygous for both traits are crossed, as shown in the Punnett square.

\begin{tabular}{|c|c|c|c|c|}
\hline & [tex]$TP$[/tex] & [tex]$Tp$[/tex] & [tex]$tP$[/tex] & [tex]$tp$[/tex] \\
\hline [tex]$TP$[/tex] & TTPP & TTPp & TtPP & TtPp \\
\hline [tex]$Tp$[/tex] & TTPp & TTpp & TtPp & Ttpp \\
\hline [tex]$tP$[/tex] & TtPP & TtPp & ttPP & ttPp \\
\hline [tex]$tp$[/tex] & TtPp & Ttpp & ttPp & ttpp \\
\hline
\end{tabular}

What is the probability of an offspring being tall and having purple flowers?

A. 0.1875



Answer :

To determine the probability of an offspring being tall and having purple flowers when two plants heterozygous for both traits (TtPp) are crossed, we need to use a Punnett square to analyze the genetic combinations. The two traits (plant height and flower color) are segregated independently:

- Tall (T) is dominant over short (t).
- Purple (P) is dominant over white (p).

When crossing two TtPp plants, each parent can produce four types of gametes: TP, Tp, tP, and tp. Therefore, the Punnett square for this cross has 16 possible outcomes.

Below is a Punnett square for the cross TtPp x TtPp:

[tex]\[ \begin{array}{|c|c|c|c|c|} \hline & TP & Tp & tP & tp \\ \hline TP & TTPP & TTPp & TtPP & TtPp \\ \hline Tp & TTPp & TTpp & TtPp & Ttpp \\ \hline tP & TtPP & TtPp & ttPP & ttPp \\ \hline tp & TtPp & Ttpp & ttPp & ttpp \\ \hline \end{array} \][/tex]

To find out how many offspring will be tall (having at least one T allele) and have purple flowers (having at least one P allele), we look for the combinations in the grid that include at least one T and one P:

[tex]\[ \begin{aligned} \text{TTPP} & \quad (\text{Tall, Purple})\\ \text{TTPp} & \quad (\text{Tall, Purple})\\ \text{TtPP} & \quad (\text{Tall, Purple})\\ \text{TtPp} & \quad (\text{Tall, Purple})\\ \end{aligned} \][/tex]

So, the combinations in the Punnett square result in the following tall and purple offspring:

1. TTPP
2. TTPP
3. TTPp
4. TTPp
5. TtPP
6. TtPP
7. TtPp
8. TtPp
9. TtPp

In total, there are 9 combinations out of the 16 possible combinations that will result in an offspring being tall and having purple flowers.

Thus, the probability [tex]\( P \)[/tex] of an offspring being tall and having purple flowers is calculated as follows:

[tex]\[ P = \frac{\text{Number of favorable outcomes}}{\text{Total number of possible outcomes}} = \frac{9}{16} = 0.5625 \][/tex]

Therefore, the probability of an offspring being tall and having purple flowers is [tex]\( \boxed{0.5625} \)[/tex].