Solve the inequality.
[tex]\[ |x+8|-3 \geq 6 \][/tex]
[tex]\[ x \leq \text{ ? } \text{ or } x \geq \text{ ? } \][/tex]

Enter the values of [tex]\(x\)[/tex].



Answer :

Certainly! Let's solve the inequality step by step.

We need to solve the inequality:

[tex]\[ |x + 8| - 3 \geq 6 \][/tex]

### Step 1: Isolate the Absolute Value

First, isolate the absolute value expression on one side of the inequality:

[tex]\[ |x + 8| - 3 \geq 6 \][/tex]

Add 3 to both sides:

[tex]\[ |x + 8| \geq 9 \][/tex]

### Step 2: Split into Two Cases

The absolute value inequality [tex]\( |x + 8| \geq 9 \)[/tex] can be split into two cases because the absolute value of a number is either positive or negative:

1. [tex]\( x + 8 \geq 9 \)[/tex]
2. [tex]\( x + 8 \leq -9 \)[/tex]

Let's solve these two inequalities separately.

#### Case 1: [tex]\( x + 8 \geq 9 \)[/tex]

Subtract 8 from both sides:

[tex]\[ x \geq 1 \][/tex]

#### Case 2: [tex]\( x + 8 \leq -9 \)[/tex]

Subtract 8 from both sides:

[tex]\[ x \leq -17 \][/tex]

### Step 3: Combine the Solutions

Our solutions are from Case 1 and Case 2:

[tex]\[ x \geq 1 \quad \text{or} \quad x \leq -17 \][/tex]

### Final Answer

The solution to the inequality [tex]\(|x + 8| - 3 \geq 6 \)[/tex] is:

[tex]\[ x \leq -17 \quad \text{or} \quad x \geq 1 \][/tex]

Therefore, [tex]\( x \leq [?] \text{ or } x \geq \)[/tex] translates to:

[tex]\[ x \leq -17 \quad \text{or} \quad x \geq 1 \][/tex]