Answer :

To simplify the expression [tex]\(-4(-x + 3)\)[/tex] using the distributive property, we proceed as follows:

1. Apply the distributive property:
The distributive property states that [tex]\(a(b + c) = ab + ac\)[/tex]. In this case, we have [tex]\(-4\)[/tex] as [tex]\(a\)[/tex], [tex]\(-x\)[/tex] as [tex]\(b\)[/tex], and [tex]\(3\)[/tex] as [tex]\(c\)[/tex].

2. Multiply [tex]\(-4\)[/tex] by each term inside the parentheses:

- Multiply [tex]\(-4\)[/tex] by [tex]\(-x\)[/tex]:
[tex]\[ -4 \cdot (-x) = 4x \][/tex]

- Multiply [tex]\(-4\)[/tex] by [tex]\(3\)[/tex]:
[tex]\[ -4 \cdot 3 = -12 \][/tex]

3. Combine the results:
After multiplying, you add the two products together:
[tex]\[ 4x + (-12) = 4x - 12 \][/tex]

Therefore, the simplified form of the expression [tex]\(-4(-x + 3)\)[/tex] is:
[tex]\[ 4x - 12 \][/tex]