Solve the inequality.

[tex]\[
\begin{array}{c}
|7+8x|\ \textgreater \ 5 \\
x\ \textless \ -\frac{1}{8} \text{ or } x\ \textgreater \ -\frac{3}{8}
\end{array}
\][/tex]



Answer :

To solve the inequality [tex]\(|7 + 8x| > 5\)[/tex], let's break it down step by step.

### Step 1: Understand Absolute Value Inequality

The inequality [tex]\(|7 + 8x| > 5\)[/tex] means that the expression inside the absolute value can take values either less than [tex]\(-5\)[/tex] or greater than [tex]\(5\)[/tex]. So, we need to consider two separate cases:
1. [tex]\(7 + 8x > 5\)[/tex]
2. [tex]\(7 + 8x < -5\)[/tex]

### Step 2: Solve Each Inequality

#### Case 1: [tex]\(7 + 8x > 5\)[/tex]

1. Subtract 7 from both sides:
[tex]\[ 7 + 8x - 7 > 5 - 7 \][/tex]
simplifies to:
[tex]\[ 8x > -2 \][/tex]

2. Divide both sides by 8:
[tex]\[ x > -\frac{2}{8} \][/tex]
which simplifies to:
[tex]\[ x > -\frac{1}{4} \][/tex]

#### Case 2: [tex]\(7 + 8x < -5\)[/tex]

1. Subtract 7 from both sides:
[tex]\[ 7 + 8x - 7 < -5 - 7 \][/tex]
simplifies to:
[tex]\[ 8x < -12 \][/tex]

2. Divide both sides by 8:
[tex]\[ x < \frac{-12}{8} \][/tex]
which simplifies to:
[tex]\[ x < -\frac{3}{2} \][/tex]

### Step 3: Combine the Results

The solution to the inequality [tex]\(|7 + 8x| > 5\)[/tex] includes values where [tex]\(x > -\frac{1}{4}\)[/tex] or [tex]\(x < -\frac{3}{2}\)[/tex]. Therefore, the solution set is:
[tex]\[ x < -\frac{3}{2} \text{ or } x > -\frac{1}{4} \][/tex]

In conclusion, the inequality [tex]\(|7 + 8x| > 5\)[/tex] has the solution:
[tex]\[ x < -\frac{3}{2} \text{ or } x > -\frac{1}{4} \][/tex]