What is the product?

[tex]\[
\frac{x^2-16}{2x+8} \cdot \frac{x^3-2x^2+x}{x^2+3x-4}
\][/tex]

A. [tex]\(\frac{x(x-4)(x-1)}{2(x+4)}\)[/tex]

B. [tex]\(\frac{x(x-1)}{2}\)[/tex]

C. [tex]\(\frac{(x+4)(x-4)}{2x(x-1)}\)[/tex]

D. [tex]\(\frac{(x-4)(x-1)}{2x(x+4)}\)[/tex]



Answer :

To determine the product of the given fractions

[tex]\[ \frac{x^2 - 16}{2x + 8} \cdot \frac{x^3 - 2x^2 + x}{x^2 + 3x - 4}, \][/tex]

we need to simplify and multiply them. We will simplify each fraction step-by-step and then find the product.

Step 1: Simplify the first fraction:

[tex]\[ \frac{x^2 - 16}{2x + 8} \][/tex]

Notice that [tex]\(x^2 - 16\)[/tex] is a difference of squares and can be factored as:

[tex]\[ x^2 - 16 = (x - 4)(x + 4) \][/tex]

So the first fraction becomes:

[tex]\[ \frac{(x - 4)(x + 4)}{2(x + 4)} \][/tex]

Cancel the common factor [tex]\((x + 4)\)[/tex]:

[tex]\[ \frac{(x - 4)}{2} \][/tex]

Step 2: Simplify the second fraction:

[tex]\[ \frac{x^3 - 2x^2 + x}{x^2 + 3x - 4} \][/tex]

Factor the numerator [tex]\(x^3 - 2x^2 + x\)[/tex]:

[tex]\[ x^3 - 2x^2 + x = x(x^2 - 2x + 1) = x(x - 1)^2 \][/tex]

Factor the denominator [tex]\(x^2 + 3x - 4\)[/tex]:

[tex]\[ x^2 + 3x - 4 = (x + 4)(x - 1) \][/tex]

So the second fraction becomes:

[tex]\[ \frac{x(x - 1)^2}{(x + 4)(x - 1)} \][/tex]

Cancel the common factor [tex]\((x - 1)\)[/tex]:

[tex]\[ \frac{x(x - 1)}{x + 4} \][/tex]

Step 3: Multiply the simplified fractions from Step 1 and Step 2:

[tex]\[ \frac{x - 4}{2} \cdot \frac{x(x - 1)}{x + 4} \][/tex]

Multiply the numerators and the denominators:

[tex]\[ \frac{(x - 4) \cdot x(x - 1)}{2(x + 4)} \][/tex]

Simplify the product:

[tex]\[ \frac{x(x - 4)(x - 1)}{2(x + 4)} \][/tex]

So the simplified form of the product is:

[tex]\[ \frac{x(x - 4)(x - 1)}{2(x + 4)} \][/tex]

Therefore, the correct answer is:

[tex]\[ \frac{x(x - 4)(x - 1)}{2(x + 4)} \][/tex]