The vertex form of the equation of a parabola is [tex]y=2(x+4)^2-7[/tex]. What is the standard form of the equation?

A. [tex]y=2x^2+16x+25[/tex]

B. [tex]y=4x^2+4x+8[/tex]

C. [tex]x=2y^2+8y+12[/tex]

D. [tex]y=2x^2+12x+12[/tex]



Answer :

To convert the equation [tex]\( y = 2(x + 4)^2 - 7 \)[/tex] from vertex form to standard form, follow these steps:

1. Expand the binomial:
Start with the binomial part [tex]\((x + 4)^2\)[/tex].
[tex]\[ (x + 4)^2 = x^2 + 8x + 16 \][/tex]

2. Distribute the coefficient 2:
Multiply each term inside the binomial by 2.
[tex]\[ 2(x^2 + 8x + 16) = 2x^2 + 16x + 32 \][/tex]

3. Combine the constants:
Now, incorporate the constant term [tex]\(-7\)[/tex] outside the binomial.
[tex]\[ y = 2x^2 + 16x + 32 - 7 \][/tex]
Simplify this by combining the constant terms [tex]\(32\)[/tex] and [tex]\(-7\)[/tex].
[tex]\[ y = 2x^2 + 16x + 25 \][/tex]

So, the standard form of the equation is:
[tex]\[ y = 2x^2 + 16x + 25 \][/tex]

This corresponds to option A:
[tex]\[ \boxed{y=2 x^2+16 x+25} \][/tex]