Write a polar equation for the conic with the given characteristics.

Given:
[tex]\[ e = 1.6 \][/tex]
Directrix: [tex]\[ y = 4 \][/tex]

A. [tex]\( r = \frac{6.4}{1 + 1.6 \cos \theta} \)[/tex]
B. [tex]\( r = \frac{6.4}{1 + 1.6 \sin \theta} \)[/tex]
C. [tex]\( r = \frac{4}{1 + 1.6 \sin \theta} \)[/tex]
D. [tex]\( r = \frac{4}{1 + 1.6 \cos \theta} \)[/tex]



Answer :

To find the correct polar equation of the conic given the eccentricity [tex]\( e = 1.6 \)[/tex] and the directrix [tex]\( y = 4 \)[/tex], follow these steps:

1. Understand the Polar Equation of a Conic:

The standard forms of the polar equation for a conic with a directrix parallel to the coordinate axes are:
[tex]\[ r = \frac{ed}{1 + e \cos \theta} \quad \text{or} \quad r = \frac{ed}{1 + e \sin \theta} \][/tex]
where [tex]\( e \)[/tex] is the eccentricity and [tex]\( d \)[/tex] is the distance from the pole to the directrix.

2. Identify the Directrix and the Relevant Trigonometric Function:

Since the directrix is given as [tex]\( y = 4 \)[/tex], it is a horizontal line. For horizontal directrices:
- Use the sine function in the denominator because the directrix is parallel to the [tex]\( x \)[/tex]-axis:
[tex]\[ r = \frac{ed}{1 + e \sin \theta} \][/tex]

3. Calculate the Numerator [tex]\( ed \)[/tex]:

Substitute the given values [tex]\( e = 1.6 \)[/tex] and [tex]\( d = 4 \)[/tex]:
[tex]\[ ed = 1.6 \times 4 = 6.4 \][/tex]

4. Form the Polar Equation:

Substitute the values into the polar equation format:
[tex]\[ r = \frac{6.4}{1 + 1.6 \sin \theta} \][/tex]

5. Verify Among the Given Options:

Among the given options, the correct polar equation is:
[tex]\[ r = \frac{6.4}{1 + 1.6 \sin \theta} \][/tex]

So, the correct answer is:
[tex]\[ r = \frac{6.4}{1 + 1.6 \sin \theta} \][/tex]