Given [tex]\( f(x) \)[/tex], evaluate [tex]\( f(6) \)[/tex].

[tex]\[
\begin{array}{c}
f(x) = \frac{2}{3} x^2 + \frac{1}{2} x - 2 \\
f(6) = [?]
\end{array}
\][/tex]



Answer :

To evaluate [tex]\( f(6) \)[/tex] for the given function [tex]\( f(x) = \frac{2}{3}x^2 + \frac{1}{2}x - 2 \)[/tex], we follow these detailed steps:

1. Substitute [tex]\( x = 6 \)[/tex] into the function:

[tex]\[ f(6) = \frac{2}{3}(6)^2 + \frac{1}{2}(6) - 2 \][/tex]

2. Calculate the value inside the function:

- First, calculate [tex]\( (6)^2 \)[/tex]:

[tex]\[ 6^2 = 36 \][/tex]

- Next, substitute [tex]\( 36 \)[/tex] into the equation:

[tex]\[ \frac{2}{3} \cdot 36 \][/tex]

- Now, perform the multiplication:

[tex]\[ \frac{2 \cdot 36}{3} = \frac{72}{3} = 24 \][/tex]

3. Calculate the second term:

- Evaluate [tex]\( \frac{1}{2} \cdot 6 \)[/tex]:

[tex]\[ \frac{1 \cdot 6}{2} = \frac{6}{2} = 3 \][/tex]

4. Combine the results:

- Add the results from steps 2 and 3, and then subtract 2:

[tex]\[ f(6) = 24 + 3 - 2 \][/tex]

5. Perform the final arithmetic:

[tex]\[ 24 + 3 = 27 \][/tex]

[tex]\[ 27 - 2 = 25 \][/tex]

Thus, the value of [tex]\( f(6) \)[/tex] is [tex]\( 25 \)[/tex].

Therefore,

[tex]\[ f(6) = 25 \][/tex]