Given [tex]f(x)[/tex], evaluate [tex]f(4)[/tex].

[tex]\[
\begin{array}{c}
f(x) = 2x^2 - 6x + 17 \\
f(4) = \, [?]
\end{array}
\][/tex]



Answer :

To solve for [tex]\( f(4) \)[/tex] given the function [tex]\( f(x) = 2x^2 - 6x + 17 \)[/tex], follow these steps:

1. Substitute [tex]\( x = 4 \)[/tex] into the function [tex]\( f(x) \)[/tex].

[tex]\[ f(4) = 2(4)^2 - 6(4) + 17 \][/tex]

2. First, calculate [tex]\( (4)^2 \)[/tex]:

[tex]\[ (4)^2 = 16 \][/tex]

3. Next, multiply this result by 2:

[tex]\[ 2 \cdot 16 = 32 \][/tex]

So, the term [tex]\( 2(4)^2 \)[/tex] evaluates to 32.

4. Now calculate the product of -6 and 4:

[tex]\[ -6 \cdot 4 = -24 \][/tex]

5. Add the results together:

[tex]\[ 32 + (-24) + 17 \][/tex]

6. Simplify:

First, [tex]\( 32 + (-24) \)[/tex] is [tex]\( 32 - 24 \)[/tex], which is:

[tex]\[ 32 - 24 = 8 \][/tex]

Then add 17:

[tex]\[ 8 + 17 = 25 \][/tex]

So, [tex]\( f(4) = 25 \)[/tex].