Given [tex]\( f(x) \)[/tex], evaluate [tex]\( f(-6) \)[/tex].

[tex]\[
\begin{array}{c}
f(x)=2x^2 + 5x - \frac{x}{3} \\
f(-6) = [?]
\end{array}
\][/tex]

Simplify your answer.



Answer :

To evaluate [tex]\( f(-6) \)[/tex] for the given function [tex]\( f(x) = 2x^2 + 5x - \frac{x}{3} \)[/tex], we follow these steps:

1. Substitute [tex]\( x = -6 \)[/tex] into the function.

[tex]\[ f(-6) = 2(-6)^2 + 5(-6) - \frac{-6}{3} \][/tex]

2. Simplify each term individually:

- Calculate [tex]\( (-6)^2 \)[/tex]:

[tex]\[ (-6)^2 = 36 \][/tex]

- Multiply [tex]\( 2 \)[/tex] by the result of [tex]\( 36 \)[/tex]:

[tex]\[ 2 \cdot 36 = 72 \][/tex]

- Multiply [tex]\( 5 \)[/tex] by [tex]\( -6 \)[/tex]:

[tex]\[ 5 \cdot (-6) = -30 \][/tex]

- Divide [tex]\( -6 \)[/tex] by [tex]\( 3 \)[/tex]:

[tex]\[ -\frac{-6}{3} = 2 \][/tex]

3. Add the results of these terms together:

[tex]\[ 72 + (-30) + 2 \][/tex]

4. Simplify the expression by performing the arithmetic operations:

- First, add [tex]\( 72 \)[/tex] and [tex]\( -30 \)[/tex]:

[tex]\[ 72 - 30 = 42 \][/tex]

- Then, add [tex]\( 42 \)[/tex] and [tex]\( 2 \)[/tex]:

[tex]\[ 42 + 2 = 44 \][/tex]

So, the value of [tex]\( f(-6) \)[/tex] when simplified is:

[tex]\[ f(-6) = 44 \][/tex]