Select the correct answer.

Points [tex]$A$[/tex] and [tex]$B$[/tex] lie on a circle centered at point [tex]$O$[/tex]. If [tex]$\frac{\text{length of } \hat{A B}}{\text{radius}} = \frac{\pi}{10}$[/tex], what is the ratio of the area of sector [tex]$AOB$[/tex] to the area of the circle?

A. [tex]$\frac{1}{10}$[/tex]
B. [tex]$\frac{\pi}{10}$[/tex]
C. [tex]$\frac{1}{20}$[/tex]
D. [tex]$\frac{\pi}{20}$[/tex]



Answer :

To solve the problem, we need to determine the ratio of the area of the sector [tex]\(AOB\)[/tex] to the area of the entire circle when given that the ratio of the arc length [tex]\(\hat{AB}\)[/tex] to the radius of the circle is [tex]\(\frac{\pi}{10}\)[/tex].

1. Understanding the Given Ratio:
The given ratio is:
[tex]\[ \frac{\text{arc length of } \hat{AB}}{\text{radius}} = \frac{\pi}{10} \][/tex]
According to the geometry of the circle, the arc length of [tex]\( \hat{AB} \)[/tex] is also given by:
[tex]\[ \text{Arc length of } \hat{AB} = r \theta \][/tex]
where [tex]\(r\)[/tex] is the radius and [tex]\(\theta\)[/tex] is the central angle in radians subtended by the arc. Thus:
[tex]\[ \frac{r \theta}{r} = \frac{\pi}{10} \implies \theta = \frac{\pi}{10} \][/tex]

2. Determining the Ratio of the Areas:
The area of a sector of a circle is given by:
[tex]\[ \text{Area of sector } = \frac{1}{2} r^2 \theta \][/tex]
and the area of the entire circle is:
[tex]\[ \text{Area of circle} = \pi r^2 \][/tex]
The ratio of the area of sector [tex]\(AOB\)[/tex] to the area of the circle is:
[tex]\[ \frac{\text{Area of sector}}{\text{Area of circle}} = \frac{\frac{1}{2} r^2 \theta}{\pi r^2 } \][/tex]

3. Simplifying the Expression:
Substituting [tex]\(\theta = \frac{\pi}{10}\)[/tex] into the ratio:
[tex]\[ \frac{\frac{1}{2} r^2 \frac{\pi}{10}}{\pi r^2} = \frac{1}{2} \cdot \frac{\pi}{10} \cdot \frac{1}{\pi} = \frac{1}{2} \cdot \frac{1}{10} = \frac{1}{20} \][/tex]

Thus, the ratio of the area of sector [tex]\(AOB\)[/tex] to the area of the circle is:

[tex]\[ \boxed{\frac{1}{20}} \][/tex]

So, the correct answer is C. [tex]\(\frac{1}{20}\)[/tex].