[tex]$y_i 3^{60}\ \textgreater \ 3^{65} \rightarrow 9^{13}\ \textgreater \ 243^5$[/tex]

14. Aflați ultima cifră a numărului:

a) [tex]$3^{2019}+5^{2020}+1^{2021}$[/tex]

Ultima cifră a numărului [tex]$3^{2019}+5^{2020}+1^{2021}$[/tex] este 3 (trei).

b) [tex]$2^{2019}+6^{2020}+2019^0$[/tex]

Ultima cifră a numărului [tex]$2^{2019}+6^{2020}+2019^0$[/tex] este 5.

c) [tex]$4^{2019}+7^{2020}+8^{2021}-9^{2022}$[/tex]

Aflați ultima cifră a acestui număr.



Answer :

To find the last digit of the number expressed by [tex]\(4^{2019} + 7^{2020} + 8^{2021} - 9^{2022}\)[/tex], we need to consider the last digit of each term separately and then compute the final result.

1. Finding the last digit of [tex]\(4^{2019}\)[/tex]:
- The last digit of powers of 4 cycle every 2 terms: [tex]\(4, 6\)[/tex].
- Since [tex]\(2019\)[/tex] is odd, the last digit of [tex]\(4^{2019}\)[/tex] is [tex]\(4\)[/tex].

2. Finding the last digit of [tex]\(7^{2020}\)[/tex]:
- The last digit of powers of 7 cycle every 4 terms: [tex]\(7, 9, 3, 1\)[/tex].
- [tex]\(2020 \mod 4 = 0\)[/tex], so the last digit of [tex]\(7^{2020}\)[/tex] corresponds to the 4th term in the cycle, which is [tex]\(1\)[/tex].

3. Finding the last digit of [tex]\(8^{2021}\)[/tex]:
- The last digit of powers of 8 cycle every 4 terms: [tex]\(8, 4, 2, 6\)[/tex].
- [tex]\(2021 \mod 4 = 1\)[/tex], so the last digit of [tex]\(8^{2021}\)[/tex] corresponds to the 1st term in the cycle, which is [tex]\(8\)[/tex].

4. Finding the last digit of [tex]\(9^{2022}\)[/tex]:
- The last digit of powers of 9 cycle every 2 terms: [tex]\(9, 1\)[/tex].
- Since [tex]\(2022\)[/tex] is even, the last digit of [tex]\(9^{2022}\)[/tex] is [tex]\(1\)[/tex].

Now we sum and subtract these last digits to find the last digit of the whole expression:

[tex]\[ 4 + 1 + 8 - 1 = 12 \][/tex]

The last digit of [tex]\(12\)[/tex] is [tex]\(2\)[/tex].

Thus, the last digit of [tex]\(4^{2019} + 7^{2020} + 8^{2021} - 9^{2022}\)[/tex] is [tex]\(\boxed{2}\)[/tex].