Solve for [tex]$t$[/tex]:

[tex]\[
\frac{t}{12} + 4 \geq -1
\][/tex]

A) [tex]$t \geq 60$[/tex]
B) [tex]$t \geq -60$[/tex]
C) [tex][tex]$t \leq -60$[/tex][/tex]
D) [tex]$t \leq 60$[/tex]



Answer :

Sure! Let's solve the given inequality step-by-step.

We have the inequality:
[tex]\[ \frac{t}{12} + 4 \geq -1 \][/tex]

Step 1: Isolate the term involving [tex]\( t \)[/tex]

Subtract 4 from both sides of the inequality to isolate the term involving [tex]\( t \)[/tex]:
[tex]\[ \frac{t}{12} + 4 - 4 \geq -1 - 4 \][/tex]
Simplifying this, we get:
[tex]\[ \frac{t}{12} \geq -5 \][/tex]

Step 2: Eliminate the denominator

To eliminate the denominator of 12, multiply both sides of the inequality by 12:
[tex]\[ 12 \cdot \frac{t}{12} \geq -5 \cdot 12 \][/tex]
Simplifying this, we get:
[tex]\[ t \geq -60 \][/tex]

So, the solution to the inequality is:
[tex]\[ t \geq -60 \][/tex]

Therefore, the correct answer is:

B) [tex]\( t \geq -60 \)[/tex]