Solve for [tex]\( m \)[/tex]:
[tex]\[ 50 \leq \frac{m}{16} + 46 \][/tex]

A) [tex]\( 64 \geq -m \)[/tex]
B) [tex]\( 64 \geq m \)[/tex]
C) [tex]\( 64 \leq m \)[/tex]
D) [tex]\( 64 \leq -m \)[/tex]



Answer :

To solve the inequality:

[tex]\[ 50 \leq \frac{m}{16} + 46 \][/tex]

we proceed with the following steps:

1. Isolate the term involving [tex]\( m \)[/tex]:

Subtract 46 from both sides of the inequality to isolate [tex]\( \frac{m}{16} \)[/tex]:

[tex]\[ 50 - 46 \leq \frac{m}{16} \][/tex]

Simplifying the left side:

[tex]\[ 4 \leq \frac{m}{16} \][/tex]

2. Solve for [tex]\( m \)[/tex]:

To eliminate the fraction, multiply both sides of the inequality by 16:

[tex]\[ 4 \times 16 \leq m \][/tex]

Performing the multiplication on the left side:

[tex]\[ 64 \leq m \][/tex]

3. Interpret the solution:

The inequality [tex]\( 64 \leq m \)[/tex] means that [tex]\( m \)[/tex] must be greater than or equal to 64. This corresponds to option C in the given choices.

Therefore, the correct answer is:

C) [tex]\( 64 \leq m \)[/tex]