Solve for [tex]f[/tex]:

[tex] f - 8 \leq 29 [/tex]

A) [tex] f \leq 37 [/tex]
B) [tex] f \leq -37 [/tex]
C) [tex] f \geq 37 [/tex]
D) [tex] f \geq -37 [/tex]



Answer :

To solve the inequality [tex]\( f - 8 \leq 29 \)[/tex] for [tex]\( f \)[/tex], follow these steps:

1. Isolate [tex]\( f \)[/tex]: To isolate [tex]\( f \)[/tex], we need to eliminate the constant term on the left side of the inequality. We will do this by adding 8 to both sides of the inequality.

[tex]\[ f - 8 \leq 29 \][/tex]

[tex]\[ f - 8 + 8 \leq 29 + 8 \][/tex]

2. Simplify the inequality: On the left side, [tex]\(-8 + 8\)[/tex] equals 0, so we simply have [tex]\( f \)[/tex]. On the right side, [tex]\(29 + 8\)[/tex] equals 37.

[tex]\[ f \leq 37 \][/tex]

Therefore, the correct solution to the inequality is [tex]\( f \leq 37 \)[/tex].

The correct option is:

A) [tex]\( f \leq 37 \)[/tex]