Solve for [tex]\( x \)[/tex]:

[tex]\[ \frac{x}{7} + 18 \geq 7 \][/tex]

A. [tex]\( x \geq 77 \)[/tex]
B. [tex]\( x \geq -77 \)[/tex]
C. [tex]\( x \leq 77 \)[/tex]
D. [tex]\( x \leq -77 \)[/tex]



Answer :

Sure, let's solve the inequality step-by-step.

We start with the inequality:
[tex]\[ \frac{x}{7} + 18 \geq 7 \][/tex]

Step 1: Isolate the term containing [tex]\( x \)[/tex]

Subtract 18 from both sides of the inequality:
[tex]\[ \frac{x}{7} + 18 - 18 \geq 7 - 18 \][/tex]

This simplifies to:
[tex]\[ \frac{x}{7} \geq -11 \][/tex]

Step 2: Solve for [tex]\( x \)[/tex]

To eliminate the fraction, multiply both sides of the inequality by 7:
[tex]\[ 7 \times \frac{x}{7} \geq 7 \times (-11) \][/tex]

This gives:
[tex]\[ x \geq -77 \][/tex]

So, the solution to the inequality is:
[tex]\[ x \geq -77 \][/tex]

Thus, the correct option is [tex]\(\boxed{\text{B) } x \geq -77}\)[/tex].