Solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{x}{11} - 6 \geq -20 \][/tex]

A) [tex]\( x \geq 154 \)[/tex]

B) [tex]\( x \geq -154 \)[/tex]

C) [tex]\( x \leq 154 \)[/tex]

D) [tex]\( x \leq -154 \)[/tex]



Answer :

To solve for [tex]\( x \)[/tex] in the inequality [tex]\(\frac{x}{11} - 6 \geq -20\)[/tex], follow these steps:

1. Isolate the term with the variable [tex]\( x \)[/tex]:
Start by getting rid of the constant term on the left side.

[tex]\[ \frac{x}{11} - 6 \geq -20 \][/tex]

Add 6 to both sides to move the -6 from the left side:

[tex]\[ \frac{x}{11} - 6 + 6 \geq -20 + 6 \][/tex]

Simplify both sides:

[tex]\[ \frac{x}{11} \geq -14 \][/tex]

2. Solve for [tex]\( x \)[/tex]:
Now, multiply both sides of the inequality by 11 to isolate [tex]\( x \)[/tex]. Since 11 is a positive number, the direction of the inequality remains the same.

[tex]\[ \frac{x}{11} \times 11 \geq -14 \times 11 \][/tex]

Simplify:

[tex]\[ x \geq -154 \][/tex]

Thus, the solution to the inequality [tex]\(\frac{x}{11} - 6 \geq -20\)[/tex] is:

[tex]\( x \geq -154 \)[/tex]

The correct answer is B) [tex]\( x \geq -154 \)[/tex].