Page 13 of 17

19. If [tex]$a$[/tex] varies jointly as [tex]$b$[/tex] and the square root of [tex]$c$[/tex] and [tex]$a=21$[/tex] when [tex]$b=5$[/tex] and [tex]$c=36$[/tex], find the value of

(a) [tex]$k$[/tex], the constant of variation.

(b) [tex]$a$[/tex] when [tex]$b=9$[/tex] and [tex]$c=100$[/tex].

(c) [tex]$c$[/tex] when [tex]$a=70$[/tex] and [tex]$b=25$[/tex].



Answer :

Certainly! Let's solve the question step by step.

### Given:

- [tex]\( a = 21 \)[/tex] when [tex]\( b = 5 \)[/tex] and [tex]\( c = 36 \)[/tex]
- [tex]\( a \)[/tex] varies jointly as [tex]\( b \)[/tex] and the square root of [tex]\( c \)[/tex], i.e., [tex]\( a = k \cdot b \cdot \sqrt{c} \)[/tex]

### Step-by-step solution:

#### (a) Finding [tex]\( k \)[/tex], the constant of variation:

We start with the relationship [tex]\( a = k \cdot b \cdot \sqrt{c} \)[/tex].

Given values:
- [tex]\( a = 21 \)[/tex]
- [tex]\( b = 5 \)[/tex]
- [tex]\( c = 36 \)[/tex]

We substitute these into the equation to solve for [tex]\( k \)[/tex]:

[tex]\[ 21 = k \cdot 5 \cdot \sqrt{36} \][/tex]

Since [tex]\( \sqrt{36} = 6 \)[/tex]:

[tex]\[ 21 = k \cdot 5 \cdot 6 \][/tex]
[tex]\[ 21 = k \cdot 30 \][/tex]

Solving for [tex]\( k \)[/tex]:

[tex]\[ k = \frac{21}{30} \][/tex]
[tex]\[ k = 0.7 \][/tex]

So, the constant of variation [tex]\( k \)[/tex] is [tex]\( \boxed{0.7} \)[/tex].

#### (b) Finding [tex]\( a \)[/tex] when [tex]\( b = 9 \)[/tex] and [tex]\( c = 100 \)[/tex]:

Using the previously found value of [tex]\( k \)[/tex] and the general formula [tex]\( a = k \cdot b \cdot \sqrt{c} \)[/tex]:

Given values:
- [tex]\( b = 9 \)[/tex]
- [tex]\( c = 100 \)[/tex]

Substitute these into the equation:

[tex]\[ a = 0.7 \cdot 9 \cdot \sqrt{100} \][/tex]

Since [tex]\( \sqrt{100} = 10 \)[/tex]:

[tex]\[ a = 0.7 \cdot 9 \cdot 10 \][/tex]
[tex]\[ a = 0.7 \cdot 90 \][/tex]
[tex]\[ a = 63 \][/tex]

So, [tex]\( a \)[/tex] when [tex]\( b = 9 \)[/tex] and [tex]\( c = 100 \)[/tex] is [tex]\( \boxed{63} \)[/tex].

#### (c) Finding [tex]\( c \)[/tex] when [tex]\( a = 70 \)[/tex] and [tex]\( b = 25 \)[/tex]:

Using the constant [tex]\( k \)[/tex] again, and the general formula [tex]\( a = k \cdot b \cdot \sqrt{c} \)[/tex]:

Given values:
- [tex]\( a = 70 \)[/tex]
- [tex]\( b = 25 \)[/tex]

We need to solve for [tex]\( c \)[/tex]. Substitute the given values into the equation:

[tex]\[ 70 = 0.7 \cdot 25 \cdot \sqrt{c} \][/tex]

Solving for [tex]\( \sqrt{c} \)[/tex]:

[tex]\[ 70 = 17.5 \cdot \sqrt{c} \][/tex]
[tex]\[ \sqrt{c} = \frac{70}{17.5} \][/tex]
[tex]\[ \sqrt{c} = 4 \][/tex]

Squaring both sides:

[tex]\[ c = 4^2 \][/tex]
[tex]\[ c = 16 \][/tex]

So, [tex]\( c \)[/tex] when [tex]\( a = 70 \)[/tex] and [tex]\( b = 25 \)[/tex] is [tex]\( \boxed{16} \)[/tex].

Hence, our answers are:
- [tex]\( k = \boxed{0.7} \)[/tex]
- [tex]\( a = \boxed{63} \)[/tex] when [tex]\( b = 9 \)[/tex] and [tex]\( c = 100 \)[/tex]
- [tex]\( c = \boxed{16} \)[/tex] when [tex]\( a = 70 \)[/tex] and [tex]\( b = 25 \)[/tex]