Simplify the expression:

[tex]\[ \frac{1}{6} + \frac{3 \sqrt{8}}{6} \cdot \left( \frac{4^2}{5} \right) - \sqrt{\frac{9}{85}} \cdot \frac{1}{2} \][/tex]



Answer :

Let's solve the expression step by step to make sure we understand how to arrive at the final result.

Given the expression:

[tex]\[ \frac{1}{6} + \frac{3 \sqrt{8}}{6} \cdot \left(\frac{4^2}{5}\right) - \sqrt{\frac{9}{85}} \cdot \frac{1}{2} \][/tex]

We will break it down into parts and simplify each part individually.

Step 1: Simplifying the first term

[tex]\[ \frac{1}{6} \][/tex]

This term is already in its simplest form:

[tex]\[ \text{Term 1} = \frac{1}{6} \approx 0.1667 \][/tex]

Step 2: Simplifying the second term

First, simplify the fraction:

[tex]\[ \frac{3 \sqrt{8}}{6} \][/tex]

This can be simplified as follows:

[tex]\[ \frac{3 \sqrt{8}}{6} = \frac{3 \sqrt{8}}{2 \cdot 3} = \frac{\sqrt{8}}{2} \][/tex]

Now calculate [tex]\(\sqrt{8}\)[/tex]:

[tex]\[ \sqrt{8} = \sqrt{4 \cdot 2} = 2 \sqrt{2} \][/tex]

So:

[tex]\[ \frac{\sqrt{8}}{2} = \frac{2 \sqrt{2}}{2} = \sqrt{2} \][/tex]

Next, simplify the rest of the term:

[tex]\[ \sqrt{2} \cdot \left(\frac{4^2}{5}\right) \][/tex]

Calculate [tex]\(4^2\)[/tex]:

[tex]\[ 4^2 = 16 \][/tex]

So the term becomes:

[tex]\[ \sqrt{2} \cdot \left(\frac{16}{5}\right) = \frac{16 \sqrt{2}}{5} \][/tex]

Thus:

[tex]\[ \text{Term 2} = \frac{3 \sqrt{8}}{6} \cdot \left(\frac{16}{5}\right) = \sqrt{2} \cdot \left(\frac{16}{5}\right) \approx 4.5255 \][/tex]

Step 3: Simplifying the third term

[tex]\[ \sqrt{\frac{9}{85}} \cdot \frac{1}{2} \][/tex]

First, calculate [tex]\(\sqrt{\frac{9}{85}}\)[/tex]:

[tex]\[ \sqrt{\frac{9}{85}} = \frac{\sqrt{9}}{\sqrt{85}} = \frac{3}{\sqrt{85}} \][/tex]

We then rationalize the denominator:

[tex]\[ \frac{3}{\sqrt{85}} \cdot \frac{\sqrt{85}}{\sqrt{85}} = \frac{3 \sqrt{85}}{85} \][/tex]

Therefore:

[tex]\[ \text{Term 3} = \sqrt{\frac{9}{85}} \cdot \frac{1}{2} = \frac{3}{\sqrt{85}} \cdot \frac{1}{2} \approx 0.1627 \][/tex]

Step 4: Combining the terms

Now we add the first two terms and subtract the third term:

[tex]\[ \frac{1}{6} + \frac{3 \sqrt{8}}{6} \cdot \left(\frac{4^2}{5}\right) - \sqrt{\frac{9}{85}} \cdot \frac{1}{2} \][/tex]

Substituting the simplified values:

[tex]\[ 0.1667 + 4.5255 - 0.1627 \][/tex]

Calculating the result:

[tex]\[ 0.1667 + 4.5255 = 4.6922 \][/tex]
[tex]\[ 4.6922 - 0.1627 = 4.5295 \][/tex]

Thus, the final result of the expression is:

[tex]\[ 4.5295 \][/tex]