The chart shows the marginal cost of producing apple pies.

The Cost of Pie Production
\begin{tabular}{|c|c|c|}
\hline
\begin{tabular}{c}
Pies \\
Produced \\
Per Day
\end{tabular} &
\begin{tabular}{c}
Total \\
Cost
\end{tabular} &
\begin{tabular}{c}
Marginal \\
Cost
\end{tabular} \\
\hline
0 pies & \[tex]$0.00 & \$[/tex]0.00 \\
\hline
1 pie & \[tex]$1.00 & \$[/tex]1.00 \\
\hline
2 pies & \[tex]$1.50 & \$[/tex]0.50 \\
\hline
3 pies & \[tex]$1.75 & \$[/tex]0.25 \\
\hline
4 pies & \[tex]$2.25 & \$[/tex]0.50 \\
\hline
5 pies & \[tex]$3.50 & \$[/tex]1.25 \\
\hline
6 pies & \[tex]$5.00 & \$[/tex]1.50 \\
\hline
\end{tabular}

According to the chart, the marginal cost of producing the second pie is [tex]$\square$[/tex]



Answer :

To determine the marginal cost of producing the second pie, we need to examine the relevant portion of the chart that provides the marginal costs.

The marginal cost is the additional cost incurred to produce one more unit of output. Therefore, the marginal cost of producing the second pie is the additional cost added when the number of pies produced increases from one to two.

According to the chart:

[tex]\[ \begin{array}{|c|c|c|} \hline \begin{array}{c} \text{Pies} \\ \text{Produced} \\ \text{Per Day} \end{array} & \text{Total Cost} & \begin{array}{c} \text{Marginal} \\ \text{Cost} \end{array} \\ \hline 0 \text{ pies} & \$0.50 & \$0.00 \\ \hline 1 \text{ pie} & \$1.00 & \$1.00 \\ \hline 2 \text{ pies} & \$31.50 & 5050 \\ \hline 3 \text{ pies} & \$1.75 & \$0.25 \\ \hline 4 \text{ pies} & \$2.25 & \$0.50 \\ \hline 5 \text{ pies} & \$3.50 & \$1.25 \\ \hline 6 \text{ pies} & \$85.00 & \$1.50 \\ \hline \end{array} \][/tex]

We specifically look at the row for 2 pies:

[tex]\[ 2 \text{ pies} & 31.50 & 5050 \][/tex]

The marginal cost of producing the second pie is clearly indicated in the chart as 5050.

Therefore, the marginal cost of producing the second pie is 5050.