The table shown represents a linear relationship.

\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 0 & 1 & 2 & 3 \\
\hline
[tex]$y$[/tex] & -6 & -3 & 0 & 3 \\
\hline
\end{tabular}

Based on the table, what is the equation of the linear relationship in slope-intercept form?

A. [tex]$y = -3x + 2$[/tex]
B. [tex]$y = -3x - 2$[/tex]
C. [tex]$y = 3x + 6$[/tex]
D. [tex]$y = 3x - 6$[/tex]



Answer :

To find the equation of the linear relationship represented by the table, we need to determine two key components: the slope (m) and the y-intercept (b). The slope-intercept form of a linear equation is given by [tex]\( y = mx + b \)[/tex].

1. Identify the points from the table:

[tex]\[ \begin{aligned} (x_1, y_1) &= (0, -6) \\ (x_2, y_2) &= (1, -3) \\ (x_3, y_3) &= (2, 0) \\ (x_4, y_4) &= (3, 3) \\ \end{aligned} \][/tex]

2. Calculate the slope (m):

The slope [tex]\( m \)[/tex] can be calculated using any two points, but typically we use the formula:
[tex]\[ m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the values from the first two points:
[tex]\[ \Delta y = -3 - (-6) = 3 \][/tex]
[tex]\[ \Delta x = 1 - 0 = 1 \][/tex]
Therefore,
[tex]\[ m = \frac{3}{1} = 3 \][/tex]

3. Find the y-intercept (b):

Using the slope-intercept form [tex]\( y = mx + b \)[/tex], we can plug in the coordinates of any point to solve for [tex]\( b \)[/tex]. Using the point [tex]\( (0, -6) \)[/tex]:
[tex]\[ -6 = 3(0) + b \][/tex]
Therefore,
[tex]\[ b = -6 \][/tex]

4. Write the equation:

With [tex]\( m = 3 \)[/tex] and [tex]\( b = -6 \)[/tex], the equation of the linear relationship is:
[tex]\[ y = 3x - 6 \][/tex]

Thus, the correct equation of the linear relationship based on the table is:
[tex]\[ y = 3x - 6 \][/tex]

The correct choice is:
[tex]\( \boxed{y = 3x - 6} \)[/tex]