Rewrite the equation in terms of [tex]u[/tex].

A. [tex]\((u^2 + 3) + u - 2 = 0\)[/tex]

B. [tex]\(u^2 + u - 2 = 0\)[/tex]

C. [tex]\((u^2 + 9) + u - 2 = 0\)[/tex]

D. [tex]\(u^2 + u + 1 = 0\)[/tex]



Answer :

Let's solve the given equations step-by-step. We will simplify each equation and write them in the standard form [tex]\(au^2 + bu + c = 0\)[/tex].

1. The first equation:
[tex]\[ (u^2 + 3) + u - 2 = 0 \][/tex]
Combine like terms within the parentheses:
[tex]\[ u^2 + 3 + u - 2 = 0 \][/tex]
Simplify further:
[tex]\[ u^2 + u + 1 = 0 \][/tex]

2. The second equation is already in the standard form:
[tex]\[ u^2 + u - 2 = 0 \][/tex]

3. The third equation:
[tex]\[ (u^2 + 9) + u - 2 = 0 \][/tex]
Combine like terms within the parentheses:
[tex]\[ u^2 + 9 + u - 2 = 0 \][/tex]
Simplify further:
[tex]\[ u^2 + u + 7 = 0 \][/tex]

4. The fourth equation is already in the standard form:
[tex]\[ u^2 + u + 1 = 0 \][/tex]

Thus, after simplifying, the equations become:
1. [tex]\(u^2 + u + 1 = 0\)[/tex]
2. [tex]\(u^2 + u - 2 = 0\)[/tex]
3. [tex]\(u^2 + u + 7 = 0\)[/tex]
4. [tex]\(u^2 + u + 1 = 0\)[/tex]

So, the final forms of the equations are:
[tex]\[ u^2 + u + 1 = 0 \][/tex]
[tex]\[ u^2 + u - 2 = 0 \][/tex]
[tex]\[ u^2 + u + 7 = 0 \][/tex]
[tex]\[ u^2 + u + 1 = 0 \][/tex]