Casey wants to wrap a gift that measures 8 inches by 6 inches by 10 inches. What is the surface area that he needs to wrap?

A. 376 in. [tex]$^2$[/tex]
B. 396 in. [tex]$^2$[/tex]
C. 416 in. [tex]$^2$[/tex]
D. 384 in. [tex]$^2$[/tex]



Answer :

To find the surface area of a rectangular prism, we use the formula:

[tex]\[ \text{Surface Area} = 2(lw + lh + wh) \][/tex]

where [tex]\( l \)[/tex] is the length, [tex]\( w \)[/tex] is the width, and [tex]\( h \)[/tex] is the height of the rectangular prism. In this case, the gift dimensions are:

- Length ([tex]\( l \)[/tex]) = 8 inches
- Width ([tex]\( w \)[/tex]) = 6 inches
- Height ([tex]\( h \)[/tex]) = 10 inches

Substituting these values into the formula, we get:

[tex]\[ \text{Surface Area} = 2(8 \cdot 6 + 8 \cdot 10 + 6 \cdot 10) \][/tex]

First, we calculate the three areas:

[tex]\[ 8 \cdot 6 = 48 \][/tex]
[tex]\[ 8 \cdot 10 = 80 \][/tex]
[tex]\[ 6 \cdot 10 = 60 \][/tex]

Next, we add these areas together:

[tex]\[ 48 + 80 + 60 = 188 \][/tex]

Then, we multiply this sum by 2:

[tex]\[ 2 \cdot 188 = 376 \][/tex]

Therefore, the surface area that Casey needs to wrap is:

[tex]\[ 376 \, \text{in.}^2 \][/tex]

Among the given options, the correct one is:

[tex]\[ 376 \, \text{in.}^2 \][/tex]