Answer :
Sure, let's work through the problem step-by-step.
Problem:
Given [tex]\( f(x)=x^2 + 3x - 3 \)[/tex] and [tex]\( g(x)=2x \)[/tex], find [tex]\( f(g(x)) \)[/tex].
Solution:
First, we need to decide which function will go inside which. Since our task is to find " [tex]\( f \)[/tex] of [tex]\( g \)[/tex] of [tex]\( x \)[/tex] ", it means we are going to substitute the function for [tex]\( g(x) \)[/tex] into every [tex]\( x \)[/tex] spot in the [tex]\( f(x) \)[/tex] function.
So, let's substitute [tex]\( g(x) \)[/tex] into [tex]\( f(x) \)[/tex]:
[tex]\[ f(g(x)) = f(2x) \][/tex]
Now, substitute [tex]\( 2x \)[/tex] (which is [tex]\( g(x) \)[/tex]) into [tex]\( f(x) \)[/tex]:
[tex]\[ f(g(x)) = f(2x) = (2x)^2 + 3(2x) - 3 \][/tex]
Next, perform the operations for each term.
- First term: [tex]\((2x)^2 = 4x^2\)[/tex]
- Second term: [tex]\(3(2x) = 6x\)[/tex]
So we have:
[tex]\[ f(g(x)) = 4x^2 + 6x - 3 \][/tex]
Let's confirm the given solution using a specific [tex]\( x \)[/tex] value. For example, if [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = 2(1) = 2 \][/tex]
Then:
[tex]\[ f(g(1)) = f(2) = (2)^2 + 3(2) - 3 = 4 + 6 - 3 = 7 \][/tex]
The calculated value in this specific example where [tex]\( x = 1 \)[/tex] indeed equals 7, confirming the correctness of our functions and substitution.
### Additional Example: [tex]\( g(f(x)) \)[/tex]
Let's also consider how this example would be different if we wanted to find [tex]\( g(f(x)) \)[/tex].
Given:
[tex]\[ f(x) = x^2 + 3x - 3 \][/tex]
[tex]\[ g(x) = 2x \][/tex]
For [tex]\( g(f(x)) \)[/tex], we need to plug the whole function [tex]\( f(x) \)[/tex] into the input [tex]\( x \)[/tex] spot in the [tex]\( g(x) \)[/tex] function.
Here's the process:
[tex]\[ g(f(x)) = g(x^2 + 3x - 3) \][/tex]
Since [tex]\( g(x) = 2x \)[/tex], we substitute [tex]\( x^2 + 3x - 3 \)[/tex] into [tex]\( x \)[/tex]:
[tex]\[ g(f(x)) = 2(x^2 + 3x - 3) \][/tex]
Then we distribute [tex]\( 2 \)[/tex] to each term inside the parentheses:
[tex]\[ g(f(x)) = 2(x^2) + 2(3x) - 2(3) \][/tex]
Simplify each term:
[tex]\[ g(f(x)) = 2x^2 + 6x - 6 \][/tex]
So the final expression for [tex]\( g(f(x)) \)[/tex] is:
[tex]\[ g(f(x)) = 2x^2 + 6x - 6 \][/tex]
Problem:
Given [tex]\( f(x)=x^2 + 3x - 3 \)[/tex] and [tex]\( g(x)=2x \)[/tex], find [tex]\( f(g(x)) \)[/tex].
Solution:
First, we need to decide which function will go inside which. Since our task is to find " [tex]\( f \)[/tex] of [tex]\( g \)[/tex] of [tex]\( x \)[/tex] ", it means we are going to substitute the function for [tex]\( g(x) \)[/tex] into every [tex]\( x \)[/tex] spot in the [tex]\( f(x) \)[/tex] function.
So, let's substitute [tex]\( g(x) \)[/tex] into [tex]\( f(x) \)[/tex]:
[tex]\[ f(g(x)) = f(2x) \][/tex]
Now, substitute [tex]\( 2x \)[/tex] (which is [tex]\( g(x) \)[/tex]) into [tex]\( f(x) \)[/tex]:
[tex]\[ f(g(x)) = f(2x) = (2x)^2 + 3(2x) - 3 \][/tex]
Next, perform the operations for each term.
- First term: [tex]\((2x)^2 = 4x^2\)[/tex]
- Second term: [tex]\(3(2x) = 6x\)[/tex]
So we have:
[tex]\[ f(g(x)) = 4x^2 + 6x - 3 \][/tex]
Let's confirm the given solution using a specific [tex]\( x \)[/tex] value. For example, if [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = 2(1) = 2 \][/tex]
Then:
[tex]\[ f(g(1)) = f(2) = (2)^2 + 3(2) - 3 = 4 + 6 - 3 = 7 \][/tex]
The calculated value in this specific example where [tex]\( x = 1 \)[/tex] indeed equals 7, confirming the correctness of our functions and substitution.
### Additional Example: [tex]\( g(f(x)) \)[/tex]
Let's also consider how this example would be different if we wanted to find [tex]\( g(f(x)) \)[/tex].
Given:
[tex]\[ f(x) = x^2 + 3x - 3 \][/tex]
[tex]\[ g(x) = 2x \][/tex]
For [tex]\( g(f(x)) \)[/tex], we need to plug the whole function [tex]\( f(x) \)[/tex] into the input [tex]\( x \)[/tex] spot in the [tex]\( g(x) \)[/tex] function.
Here's the process:
[tex]\[ g(f(x)) = g(x^2 + 3x - 3) \][/tex]
Since [tex]\( g(x) = 2x \)[/tex], we substitute [tex]\( x^2 + 3x - 3 \)[/tex] into [tex]\( x \)[/tex]:
[tex]\[ g(f(x)) = 2(x^2 + 3x - 3) \][/tex]
Then we distribute [tex]\( 2 \)[/tex] to each term inside the parentheses:
[tex]\[ g(f(x)) = 2(x^2) + 2(3x) - 2(3) \][/tex]
Simplify each term:
[tex]\[ g(f(x)) = 2x^2 + 6x - 6 \][/tex]
So the final expression for [tex]\( g(f(x)) \)[/tex] is:
[tex]\[ g(f(x)) = 2x^2 + 6x - 6 \][/tex]