Investment portfolios are shown with the amount of money placed in each investment and the ROR.

\begin{tabular}{|c|l|l|l|}
\hline Investment & Portfolio 1 & Portfolio 2 & ROR \\
\hline Company Stock & [tex]$\$[/tex] 2,800[tex]$ & $[/tex]\[tex]$ 1,275$[/tex] & [tex]$4.99\%$[/tex] \\
\hline Government Bond & [tex]$\$[/tex] 3,200[tex]$ & $[/tex]\[tex]$ 2,200$[/tex] & [tex]$6.87\%$[/tex] \\
\hline Bank Bond & [tex]$\$[/tex] 950[tex]$ & $[/tex]\[tex]$ 865$[/tex] & [tex]$-3.12\%$[/tex] \\
\hline Common Stock & [tex]$\$[/tex] 1,500[tex]$ & $[/tex]\[tex]$ 1,700$[/tex] & [tex]$9.59\%$[/tex] \\
\hline
\end{tabular}

Which portfolio earns the most, and by how much?

A. Portfolio 1 earns [tex]$\$[/tex] 128.27[tex]$ more.
B. Portfolio 2 earns $[/tex]\[tex]$ 128.27$[/tex] more.
C. Portfolio 1 earns [tex]$\$[/tex] 122.97[tex]$ more.
D. Portfolio 2 earns $[/tex]\[tex]$ 122.97$[/tex] more.



Answer :

To determine which portfolio earns more and by how much, let's analyze the investments of Portfolio 1 and Portfolio 2, along with their respective rates of return (ROR).

Here are the details:

[tex]\[ \begin{tabular}{|c|l|l|l|} \hline Investment & Portfolio 1 (\$) & Portfolio 2 (\$) & ROR (\%) \\ \hline ch Company Stock & 2,800 & 1,275 & 4.99 \\ \hline ovemment Bond & 3,200 & 2,200 & 6.87 \\ \hline ink Bond & 950 & 865 & -3.12 \\ \hline ommon Stock & 1,500 & 1,700 & 9.59 \\ \hline \end{tabular} \][/tex]

### Step-by-Step Calculation:

#### Portfolio 1 Earnings:
1. ch Company Stock:
[tex]\[ \$ 2,800 \times \frac{4.99}{100} = \$ 139.72 \][/tex]

2. ovemment Bond:
[tex]\[ \$ 3,200 \times \frac{6.87}{100} = \$ 219.84 \][/tex]

3. ink Bond:
[tex]\[ \$ 950 \times \left(\frac{-3.12}{100}\right) = -\$ 29.64 \][/tex]

4. ommon Stock:
[tex]\[ \$ 1,500 \times \frac{9.59}{100} = \$ 143.85 \][/tex]

Total earnings for Portfolio 1:
[tex]\[ \$ 139.72 + \$ 219.84 - \$ 29.64 + \$ 143.85 = \$ 473.77 \][/tex]

#### Portfolio 2 Earnings:
1. ch Company Stock:
[tex]\[ \$ 1,275 \times \frac{4.99}{100} = \$ 63.6225 \][/tex]

2. ovemment Bond:
[tex]\[ \$ 2,200 \times \frac{6.87}{100} = \$ 151.14 \][/tex]

3. ink Bond:
[tex]\[ \$ 865 \times \left(\frac{-3.12}{100}\right) = -\$ 26.988 \][/tex]

4. ommon Stock:
[tex]\[ \$ 1,700 \times \frac{9.59}{100} = \$ 163.03 \][/tex]

Total earnings for Portfolio 2:
[tex]\[ \$ 63.6225 + \$ 151.14 - \$ 26.988 + \$ 163.03 = \$ 350.8045 \][/tex]

#### Difference and Portfolio Comparison:
- Difference:
[tex]\[ \$ 473.77 - \$ 350.8045 = \$ 122.9655 \][/tex]

Based on the calculations, Portfolio 1 earns more than Portfolio 2 by \[tex]$ 122.97 (rounded to two decimal places). So, the correct answer is: Portfolio 1 earns \$[/tex] 122.97 more.