Answer :

Let's solve the expression step-by-step:

We are given the expression:
[tex]\[ 17 \sqrt{b} - 9 \sqrt{b} - \sqrt{b} - 6 \sqrt{b} \][/tex]

1. First, identify all the terms that involve [tex]\(\sqrt{b}\)[/tex]. Each term has [tex]\(\sqrt{b}\)[/tex] as a common factor.
2. Combine the coefficients (the numbers multiplying [tex]\(\sqrt{b}\)[/tex]) of each term.

The coefficients are:
[tex]\[ 17, -9, -1, -6 \][/tex]

3. Add these coefficients together:

[tex]\[ 17 - 9 = 8 \][/tex]

[tex]\[ 8 - 1 = 7 \][/tex]

[tex]\[ 7 - 6 = 1 \][/tex]

So the combined coefficient of [tex]\(\sqrt{b}\)[/tex] is [tex]\(1\)[/tex].

4. Now, multiply this combined coefficient by [tex]\(\sqrt{b}\)[/tex].

Therefore,
[tex]\[ 17 \sqrt{b} - 9 \sqrt{b} - \sqrt{b} - 6 \sqrt{b} = 1 \sqrt{b} \][/tex]

Simplifying, we get:
[tex]\[ 1 \sqrt{b} = \sqrt{b} \][/tex]

So the simplified expression is:
[tex]\[ \sqrt{b} \][/tex]

Therefore,
[tex]\[ 17 \sqrt{b} - 9 \sqrt{b} - \sqrt{b} - 6 \sqrt{b} = \sqrt{b} \][/tex]