Its minimum distance from the sun (perihelion) is 4.4 billion kilometers. Pluto last reached its perihelion in the year 1989, and will next reach its perihelion in 2237.

1. Find the formula of the trigonometric function that models Pluto's distance [tex]\(D\)[/tex] from the sun (in billion km) [tex]\(t\)[/tex] years after 2000. Define the function using radians.
[tex]\[ D(t) = \square \][/tex]

2. How far will Pluto be from the sun in 2022? Round your answer, if necessary, to two decimal places. [tex]\(\quad\)[/tex] billion km

Show Calculator



Answer :

To find the formula of the trigonometric function that models Pluto's distance [tex]\(D\)[/tex] from the Sun (in billion km) [tex]\(t\)[/tex] years after 2000, and to determine how far Pluto will be from the Sun in 2022, we'll proceed as follows:

### Step 1: Finding the Trigonometric Function

1. Identify the parameters given:
- Minimum distance (perihelion): [tex]\( D_{\min} = 4.4 \)[/tex] billion kilometers.
- Pluto reached perihelion in 1989.
- Pluto will next reach perihelion in 2237.

2. Calculate the period of Pluto’s orbit:
- The period [tex]\( T \)[/tex] is the time between two consecutive perihelion passages.
- [tex]\( T = 2237 - 1989 = 248 \)[/tex] years.

3. Determine the angular frequency:
- Angular frequency [tex]\( \omega = \frac{2\pi}{T} = \frac{2\pi}{248} \)[/tex].

4. Formulate the distance function:
- Given that perihelion (minimum distance) occurs at a cosine maximum (i.e., [tex]\(\cos(0) = 1\)[/tex]), we can model the distance [tex]\(D(t)\)[/tex] using the cosine function.
- Let [tex]\( t \)[/tex] be the number of years after 2000.
- The function would be:
[tex]\[ D(t) = D_{\min} \cdot \cos\left(\omega (t - (2000 - 1989))\right) \][/tex]
- Since [tex]\( 2000 - 1989 = 11 \)[/tex], we substitute and get:
[tex]\[ D(t) = 4.4 \cdot \cos\left(\frac{2\pi}{248}(t - 11)\right) \][/tex]

So, the formula for Pluto's distance from the Sun [tex]\( D(t) \)[/tex] years after 2000 is:
[tex]\[ D(t) = 4.4 \cdot \cos\left(\frac{2\pi}{248}(t - 11)\right) \][/tex]

### Step 2: Calculate Pluto’s Distance in 2022

1. Substitute [tex]\( t = 2022 - 2000 = 22 \)[/tex] into the formula:
[tex]\[ D(22) = 4.4 \cdot \cos\left(\frac{2\pi}{248}(22 - 11)\right) \][/tex]

2. Simplify the argument of the cosine function:
[tex]\[ D(22) = 4.4 \cdot \cos\left(\frac{2\pi}{248} \times 11\right) \][/tex]

3. Calculate the value:
- Using the trigonometric function,
[tex]\[ D(22) \approx 2.95 \text{ billion km} \][/tex]

Therefore, Pluto will be approximately [tex]\( 2.95 \)[/tex] billion kilometers away from the Sun in 2022.

### Final Answer

The trigonometric function that models Pluto's distance from the Sun [tex]\( D(t) \)[/tex] years after 2000 is:
[tex]\[ D(t) = 4.4 \cdot \cos\left(\frac{2\pi}{248}(t - 11)\right) \][/tex]

Pluto will be approximately [tex]\( 2.95 \)[/tex] billion kilometers away from the Sun in 2022.