Find the distance, [tex]\(d\)[/tex], of [tex]\(AB\)[/tex].

[tex]\[
A = (-2, -10) \quad B = (-6, 0)
\][/tex]

[tex]\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\][/tex]

[tex]\[
d = \sqrt{(-6 + 2)^2 + (0 + 10)^2}
\][/tex]

Round to the nearest tenth.

Distance: [tex]\(\boxed{\phantom{0}}\)[/tex]



Answer :

To find the distance [tex]\(d\)[/tex] between points [tex]\(A (-2, -10)\)[/tex] and [tex]\(B (-6, 0)\)[/tex], we will utilize the distance formula:

[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Given the coordinates of the points, we have:
- [tex]\(x_1 = -2\)[/tex]
- [tex]\(y_1 = -10\)[/tex]
- [tex]\(x_2 = -6\)[/tex]
- [tex]\(y_2 = 0\)[/tex]

Step-by-step, let's calculate the distance:

1. Calculate the difference in the x-coordinates (horizontal distance):
[tex]\[ x_2 - x_1 = -6 - (-2) = -6 + 2 = -4 \][/tex]
So, the horizontal distance is [tex]\(-4\)[/tex].

2. Calculate the difference in the y-coordinates (vertical distance):
[tex]\[ y_2 - y_1 = 0 - (-10) = 0 + 10 = 10 \][/tex]
So, the vertical distance is [tex]\(10\)[/tex].

3. Square these distances:
[tex]\[ (-4)^2 = 16 \][/tex]
[tex]\[ 10^2 = 100 \][/tex]

4. Sum these squared distances:
[tex]\[ 16 + 100 = 116 \][/tex]

5. Take the square root of the sum to find the distance:
[tex]\[ d = \sqrt{116} \approx 10.770329614269007 \][/tex]

6. Round the result to the nearest tenth:
[tex]\[ d \approx 10.8 \][/tex]

Therefore, the distance [tex]\(d\)[/tex] between points [tex]\(A\)[/tex] and [tex]\(B\)[/tex] is:
[tex]\[ \boxed{10.8} \][/tex]