Which function has real zeros at [tex]$x=3$[/tex] and [tex]$x=7$[/tex]?

A. [tex]f(x) = x^2 + 4x - 21[/tex]
B. [tex]f(x) = x^2 - 4x - 21[/tex]
C. [tex]f(x) = x^2 - 10x + 21[/tex]
D. [tex]f(x) = x^2 - 10x - 21[/tex]



Answer :

In order to determine which function has real zeros at [tex]\( x = 3 \)[/tex] and [tex]\( x = 7 \)[/tex], we can follow these steps:

1. Formulating the Problem: We need to find out which function, when evaluated at [tex]\( x = 3 \)[/tex] and [tex]\( x = 7 \)[/tex], yields a result of zero. This implies that for a function [tex]\( f(x) \)[/tex], [tex]\( f(3) = 0 \)[/tex] and [tex]\( f(7) = 0 \)[/tex].

2. Evaluating Each Function:
- For the function [tex]\( f(x) = x^2 + 4x - 21 \)[/tex]:
[tex]\[ f(3) = 3^2 + 4 \cdot 3 - 21 = 9 + 12 - 21 = 0 \][/tex]
[tex]\[ f(7) = 7^2 + 4 \cdot 7 - 21 = 49 + 28 - 21 = 56 \neq 0 \][/tex]
- Thus, this function does not have zeros at [tex]\( x = 3 \)[/tex] and [tex]\( x = 7 \)[/tex].

- For the function [tex]\( f(x) = x^2 - 4x - 21 \)[/tex]:
[tex]\[ f(3) = 3^2 - 4 \cdot 3 - 21 = 9 - 12 - 21 = -24 \neq 0 \][/tex]
[tex]\[ f(7) = 7^2 - 4 \cdot 7 - 21 = 49 - 28 - 21 = 0 \][/tex]
- Thus, this function does not have zeros at [tex]\( x = 3 \)[/tex] and [tex]\( x = 7 \)[/tex].

- For the function [tex]\( f(x) = x^2 - 10x + 21 \)[/tex]:
[tex]\[ f(3) = 3^2 - 10 \cdot 3 + 21 = 9 - 30 + 21 = 0 \][/tex]
[tex]\[ f(7) = 7^2 - 10 \cdot 7 + 21 = 49 - 70 + 21 = 0 \][/tex]
- This function has zeros at both [tex]\( x = 3 \)[/tex] and [tex]\( x = 7 \)[/tex].

- For the function [tex]\( f(x) = x^2 - 10x - 21 \)[/tex]:
[tex]\[ f(3) = 3^2 - 10 \cdot 3 - 21 = 9 - 30 - 21 = -42 \neq 0 \][/tex]
[tex]\[ f(7) = 7^2 - 10 \cdot 7 - 21 = 49 - 70 - 21 = -42 \neq 0 \][/tex]
- Thus, this function does not have zeros at [tex]\( x = 3 \)[/tex] and [tex]\( x = 7 \)[/tex].

3. Conclusion: The function [tex]\( f(x) = x^2 - 10x + 21 \)[/tex] is the only one that has real zeros at both [tex]\( x = 3 \)[/tex] and [tex]\( x = 7 \)[/tex].

So, the function with real zeros at [tex]\( x = 3 \)[/tex] and [tex]\( x = 7 \)[/tex] is:
[tex]\[ f(x) = x^2 - 10x + 21 \][/tex]