Answered

Solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 - 8x + 16 = 0 \][/tex]

If there is more than one solution, separate them with commas. If there is no solution, click on "No solution."

[tex]\[ x = \][/tex]

[tex]\(\boxed{} \)[/tex] - [tex]\(\boxed{} \)[/tex]

[tex]\(\boxed{\text{No solution}}\)[/tex]

[tex]\(\sqrt{\boxed{}}\)[/tex]



Answer :

Let's solve the quadratic equation [tex]\( x^2 - 8x + 16 = 0 \)[/tex].

1. Identify coefficients:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = -8\)[/tex]
- [tex]\(c = 16\)[/tex]

2. Formulate the quadratic formula:
- The quadratic formula is [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].

3. Calculate the discriminant:
- The discriminant [tex]\(\Delta\)[/tex] of the quadratic equation [tex]\( ax^2 + bx + c \)[/tex] is given by [tex]\( \Delta = b^2 - 4ac \)[/tex].
- For [tex]\( x^2 - 8x + 16 = 0 \)[/tex]:
[tex]\[ \Delta = (-8)^2 - 4 \cdot 1 \cdot 16 \][/tex]
[tex]\[ \Delta = 64 - 64 \][/tex]
[tex]\[ \Delta = 0 \][/tex]

4. Evaluate the discriminant:
- If [tex]\(\Delta > 0\)[/tex], there are two distinct real solutions.
- If [tex]\(\Delta = 0\)[/tex], there is exactly one real solution.
- If [tex]\(\Delta < 0\)[/tex], there are no real solutions.

5. Solve for [tex]\(x\)[/tex]:
- Since [tex]\(\Delta = 0\)[/tex], there is exactly one real solution.
- Using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
- Substitute the known values:
[tex]\[ x = \frac{-(-8) \pm \sqrt{0}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{8 \pm 0}{2} \][/tex]
[tex]\[ x = \frac{8}{2} \][/tex]
[tex]\[ x = 4 \][/tex]

Therefore, the solution to the quadratic equation [tex]\( x^2 - 8x + 16 = 0 \)[/tex] is:
[tex]\[ x = 4 \][/tex]