Using the equation for the line of best fit, [tex]f(x) = -0.86x + 13.5[/tex], what is a good approximation for the value of the function [tex]f(x)[/tex] when [tex]x = 18[/tex]?

A. -5
B. -2
C. 3
D. 12

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
2 & 12 \\
\hline
3 & 10 \\
\hline
5 & 10 \\
\hline
6 & 8 \\
\hline
7 & 9 \\
\hline
8 & 5 \\
\hline
9 & 6 \\
\hline
\end{tabular}



Answer :

To find a good approximation for the value of the function [tex]\( f(x) \)[/tex] when [tex]\( x = 18 \)[/tex], we will use the equation of the line of best fit given by:

[tex]\[ f(x) = -0.86x + 13.5 \][/tex]

We need to substitute [tex]\( x = 18 \)[/tex] into this equation and solve for [tex]\( f(18) \)[/tex].

Step-by-step solution:

1. Start with the equation of the line of best fit:
[tex]\[ f(x) = -0.86x + 13.5 \][/tex]

2. Substitute [tex]\( x = 18 \)[/tex] into the equation:
[tex]\[ f(18) = -0.86(18) + 13.5 \][/tex]

3. Perform the multiplication:
[tex]\[ -0.86 \times 18 = -15.48 \][/tex]

4. Add [tex]\( 13.5 \)[/tex] to the result:
[tex]\[ f(18) = -15.48 + 13.5 = -1.98 \][/tex]

Thus, the value of the function [tex]\( f(x) \)[/tex] when [tex]\( x = 18 \)[/tex] is approximately [tex]\( -1.98 \)[/tex].

Among the given choices:
- [tex]\( -5 \)[/tex]
- [tex]\( -2 \)[/tex]
- [tex]\( 3 \)[/tex]
- [tex]\( 12 \)[/tex]

The closest approximation to [tex]\( -1.98 \)[/tex] is [tex]\( -2 \)[/tex].

Therefore, a good approximation for the value of the function when [tex]\( x = 18 \)[/tex] is [tex]\( -2 \)[/tex].