Answered

Use the quadratic formula to solve for [tex]x[/tex].

[tex]\[ 3x^2 + 5x - 3 = 0 \][/tex]

Round your answer to the nearest hundredth. If there is more than one solution, separate them with commas.

[tex]\[ x = \square \][/tex]



Answer :

To solve the quadratic equation [tex]\( 3x^2 + 5x - 3 = 0 \)[/tex] using the quadratic formula, let's follow these steps carefully:

The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Where [tex]\( a = 3 \)[/tex], [tex]\( b = 5 \)[/tex], and [tex]\( c = -3 \)[/tex].

1. Calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
Plugging in the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \text{Discriminant} = 5^2 - 4(3)(-3) = 25 + 36 = 61 \][/tex]

2. Calculate the two solutions using the quadratic formula:

[tex]\[ x_1 = \frac{-b + \sqrt{\text{Discriminant}}}{2a} \][/tex]

[tex]\[ x_2 = \frac{-b - \sqrt{\text{Discriminant}}}{2a} \][/tex]

Substitute [tex]\( a = 3 \)[/tex], [tex]\( b = 5 \)[/tex], and the discriminant calculated:

First solution [tex]\( x_1 \)[/tex]:
[tex]\[ x_1 = \frac{-5 + \sqrt{61}}{2 \times 3} \approx 0.46837494598444235 \][/tex]

Second solution [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = \frac{-5 - \sqrt{61}}{2 \times 3} \approx -2.135041612651109 \][/tex]

3. Round the solutions to the nearest hundredth:

[tex]\[ x_1 \approx 0.47 \][/tex]

[tex]\[ x_2 \approx -2.14 \][/tex]

Therefore, the solutions to the quadratic equation [tex]\( 3x^2 + 5x - 3 = 0 \)[/tex], rounded to the nearest hundredth, are:

[tex]\[ x = 0.47, -2.14 \][/tex]