What are the solutions of [tex]$3 x^2 + 14 x + 16 = 0$[/tex]?

A. [tex]x = -\frac{8}{3}, -2[/tex]
B. [tex]x = -2, -\frac{3}{8}[/tex]
C. [tex]x = \frac{3}{8}, 2[/tex]
D. [tex]x = \frac{8}{3}, 2[/tex]



Answer :

To find the solutions of the quadratic equation [tex]\(3x^2 + 14x + 16 = 0\)[/tex], we use the quadratic formula, which is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, [tex]\(a = 3\)[/tex], [tex]\(b = 14\)[/tex], and [tex]\(c = 16\)[/tex].

1. Calculate the discriminant ([tex]\(\Delta\)[/tex]) which is [tex]\(b^2 - 4ac\)[/tex]:

[tex]\[ \Delta = b^2 - 4ac = 14^2 - 4 \cdot 3 \cdot 16 = 196 - 192 = 4 \][/tex]

2. Find the square root of the discriminant:

[tex]\[ \sqrt{\Delta} = \sqrt{4} = 2 \][/tex]

3. Apply the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(14) \pm 2}{2 \cdot 3} = \frac{-14 \pm 2}{6} \][/tex]

This gives us two solutions:

[tex]\[ x_1 = \frac{-14 + 2}{6} = \frac{-12}{6} = -2 \][/tex]

[tex]\[ x_2 = \frac{-14 - 2}{6} = \frac{-16}{6} = -\frac{8}{3} \][/tex]

Therefore, the solutions to the quadratic equation [tex]\(3x^2 + 14x + 16 = 0\)[/tex] are:

[tex]\[ x = -2 \quad \text{and} \quad x = -\frac{8}{3} \][/tex]

So, the correct choice is:

[tex]\[ x = -2, -\frac{8}{3} \][/tex]