Find the midpoint, [tex]\( M \)[/tex], of [tex]\(\overline{AB}\)[/tex].

[tex]\[ A = (2, 5), \; B = (-6, -3) \][/tex]

[tex]\[
\begin{array}{l}
M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \\
M = \left( \frac{2 + (-6)}{2}, \frac{5 + (-3)}{2} \right) \\
M = (-2, 1)
\end{array}
\][/tex]



Answer :

To find the midpoint [tex]\( M \)[/tex] of the line segment [tex]\(\overline{AB}\)[/tex], where [tex]\( A = (2, 5) \)[/tex] and [tex]\( B = (-6, -3) \)[/tex], we use the midpoint formula. The midpoint [tex]\( M \)[/tex] of a segment with endpoints [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by:

[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Given the coordinates of point [tex]\( A \)[/tex] as [tex]\( (2, 5) \)[/tex] and point [tex]\( B \)[/tex] as [tex]\( (-6, -3) \)[/tex], we substitute these values into the formula:

1. Calculate the x-coordinate of the midpoint:

[tex]\[ \text{midpoint}_x = \frac{x_1 + x_2}{2} = \frac{2 + (-6)}{2} = \frac{2 - 6}{2} = \frac{-4}{2} = -2 \][/tex]

2. Calculate the y-coordinate of the midpoint:

[tex]\[ \text{midpoint}_y = \frac{y_1 + y_2}{2} = \frac{5 + (-3)}{2} = \frac{5 - 3}{2} = \frac{2}{2} = 1 \][/tex]

Therefore, the coordinates of the midpoint [tex]\( M \)[/tex] are:

[tex]\[ M = (-2, 1) \][/tex]