Solve [tex]$3^{x+1}=15$[/tex] for [tex]$x$[/tex] using the change of base formula [tex]$\log_b y=\frac{\log y}{\log b}$[/tex].

A. [tex]-0.594316[/tex]
B. [tex]1.405684[/tex]
C. [tex]1.464973[/tex]
D. [tex]3.469743[/tex]



Answer :

To solve the equation [tex]\(3^{x+1} = 15\)[/tex] for [tex]\(x\)[/tex], we can use logarithms and the change of base formula [tex]\(\log_b(y) = \frac{\log(y)}{\log(b)}\)[/tex]. Here is a detailed step-by-step solution:

1. Step 1: Apply the natural logarithm to both sides.

Take the natural logarithm (logarithm with base [tex]\(e\)[/tex]) of both sides of the given equation:

[tex]\[ \ln(3^{x+1}) = \ln(15) \][/tex]

2. Step 2: Use the property of logarithms to bring down the exponent.

Use the logarithmic identity [tex]\(\ln(a^b) = b \cdot \ln(a)\)[/tex] to move the exponent [tex]\(x+1\)[/tex] in front of the logarithm:

[tex]\[ (x+1) \cdot \ln(3) = \ln(15) \][/tex]

3. Step 3: Isolate [tex]\(x+1\)[/tex].

To solve for [tex]\(x\)[/tex], divide both sides of the equation by [tex]\(\ln(3)\)[/tex]:

[tex]\[ x+1 = \frac{\ln(15)}{\ln(3)} \][/tex]

4. Step 4: Solve for [tex]\(x\)[/tex].

Subtract 1 from both sides to isolate [tex]\(x\)[/tex]:

[tex]\[ x = \frac{\ln(15)}{\ln(3)} - 1 \][/tex]

5. Step 5: Calculate the values of the logarithms.

Using the known result of the calculations (which we've verified previously):

- [tex]\(\frac{\ln(15)}{\ln(3)} \approx 2.464973520717927\)[/tex]
- Subtracting 1 from this value gives:

[tex]\[ x \approx 2.464973520717927 - 1 = 1.464973520717927 \][/tex]

Thus the value of [tex]\(x\)[/tex] is approximately [tex]\(1.464973\)[/tex]. Among the provided options, the correct one is:

1.464973