Which expression is equivalent to [tex]\sqrt{\frac{25 x^9 y^3}{64 x^6 y^{11}}}[/tex]? Assume [tex]x \ \textgreater \ 0[/tex] and [tex]y \ \textgreater \ 0[/tex].

A. [tex]\frac{8 y^4 \sqrt{x}}{5 x}[/tex]

B. [tex]\frac{8 y^2 \sqrt{x}}{5}[/tex]

C. [tex]\frac{5 \sqrt{x}}{8 y^2}[/tex]

D. [tex]\frac{5 x \sqrt{x}}{8 y^4}[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\sqrt{\frac{25 x^9 y^3}{64 x^6 y^{11}}}\)[/tex], let's break down the given expression step by step.

### Step 1: Simplify the Fraction Inside the Square Root
First, we simplify the fraction under the square root:
[tex]\[ \frac{25 x^9 y^3}{64 x^6 y^{11}} \][/tex]

We can simplify the fraction by dividing both the numerator and the denominator by the common factors. Let's simplify the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms separately:

[tex]\[ \frac{x^9}{x^6} = x^{9-6} = x^3 \][/tex]

[tex]\[ \frac{y^3}{y^{11}} = y^{3-11} = y^{-8} = \frac{1}{y^8} \][/tex]

So the fraction simplifies to:
[tex]\[ \frac{25 x^3}{64 y^8} \][/tex]

### Step 2: Rewrite the Simplified Fraction
Now the fraction inside the square root is:
[tex]\[ \frac{25 x^3}{64 y^8} \][/tex]

### Step 3: Apply the Square Root
Next, we apply the square root to the entire fraction:
[tex]\[ \sqrt{\frac{25 x^3}{64 y^8}} \][/tex]

We can split the square root across the numerator and the denominator:
[tex]\[ \frac{\sqrt{25 x^3}}{\sqrt{64 y^8}} \][/tex]

### Step 4: Simplify the Square Roots Individually
Now, let's simplify each part separately:
[tex]\[ \sqrt{25 x^3} = \sqrt{25} \cdot \sqrt{x^3} = 5 \cdot \sqrt{x^3} = 5 \cdot x^{3/2} = 5 \cdot x^{1.5} \][/tex]

[tex]\[ \sqrt{64 y^8} = \sqrt{64} \cdot \sqrt{y^8} = 8 \cdot y^{8/2} = 8 \cdot y^4 \][/tex]

So, the expression becomes:
[tex]\[ \frac{5 \cdot x^{1.5}}{8 \cdot y^4} = \frac{5 \sqrt{x^3}}{8 y^4} = \frac{5 (x \cdot \sqrt{x})}{8 y^4} = \frac{5 \sqrt{x}}{8 y^4} \][/tex]

### Step 5: Compare to Provided Options
Out of the given options, the expression equivalent to [tex]\(\sqrt{\frac{25 x^9 y^3}{64 x^6 y^{11}}}\)[/tex] is:
[tex]\[ \frac{5 \sqrt{x}}{8 y^4} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{\frac{5 \sqrt{x}}{8 y^4}} \][/tex]