Which expression is equivalent to [tex]\sqrt[4]{\frac{24 x^6 y}{128 x^4 y^5}}[/tex]? Assume [tex]x \neq 0[/tex] and [tex]y \ \textgreater \ 0[/tex].

A. [tex]\frac{\sqrt[4]{3}}{2 x^2 y}[/tex]
B. [tex]\frac{x(\sqrt[4]{3})}{4 y^2}[/tex]
C. [tex]\frac{\sqrt[4]{3}}{4 x y^2}[/tex]
D. [tex]\frac{\sqrt[4]{3 x^2}}{2 y}[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\sqrt[4]{\frac{24 x^6 y}{128 x^4 y^5}}\)[/tex], we need to simplify the given expression step by step.

1. Start with the given expression:

[tex]\[ \sqrt[4]{\frac{24 x^6 y}{128 x^4 y^5}} \][/tex]

2. Simplify the fraction inside the radical:

[tex]\[ \frac{24 x^6 y}{128 x^4 y^5} = \frac{24}{128} \cdot \frac{x^6}{x^4} \cdot \frac{y}{y^5} \][/tex]

3. Simplify each term separately:
- Simplify the numerical fraction:
[tex]\[ \frac{24}{128} = \frac{24 \div 8}{128 \div 8} = \frac{3}{16} \][/tex]

- Simplify the powers of [tex]\(x\)[/tex]:
[tex]\[ \frac{x^6}{x^4} = x^{6-4} = x^2 \][/tex]

- Simplify the powers of [tex]\(y\)[/tex]:
[tex]\[ \frac{y}{y^5} = y^{1-5} = y^{-4} \][/tex]

4. Combine all simplified terms:
[tex]\[ \frac{3}{16} \cdot x^2 \cdot y^{-4} = \frac{3 x^2}{16 y^4} \][/tex]

5. Now we have:
[tex]\[ \sqrt[4]{\frac{3 x^2}{16 y^4}} \][/tex]

6. Separately apply the fourth root to the numerator and the denominator:
[tex]\[ \sqrt[4]{\frac{3 x^2}{16 y^4}} = \frac{\sqrt[4]{3 x^2}}{\sqrt[4]{16 y^4}} \][/tex]

7. Compute the fourth root of the numerator and denominator:
- The denominator:
[tex]\[ \sqrt[4]{16 y^4} = \sqrt[4]{16} \cdot \sqrt[4]{y^4} = 2 \cdot y \][/tex]

- The numerator:
[tex]\[ \sqrt[4]{3 x^2} = 3^{1/4} \cdot (x^2)^{1/4} = 3^{1/4} \cdot x^{2/4} = 3^{1/4} \cdot x^{1/2} \][/tex]

8. Combine these results:
[tex]\[ \frac{\sqrt[4]{3 x^2}}{\sqrt[4]{16 y^4}} = \frac{3^{1/4} \cdot x^{1/2}}{2 y} \][/tex]

9. Recognize that [tex]\(x^{1/2}\)[/tex] is the same as [tex]\(\sqrt{x}\)[/tex]:
[tex]\[ \frac{3^{1/4} \sqrt{x}}{2 y} \][/tex]

Therefore, the correct equivalent expression is:
[tex]\[ \frac{\sqrt[4]{3 x^2}}{2 y} \][/tex]

So the corresponding option is:

[tex]\(\boxed{\frac{\sqrt[4]{3 x^2}}{2 y}}\)[/tex] which matches option [tex]\(4\)[/tex].