Solve for [tex]y[/tex].

[tex]\[2y^2 = 3y + 2\][/tex]

If there is more than one solution, separate them with commas. If there is no solution, select "No solution."

[tex]\[y = \square\][/tex]

[ ] No solution



Answer :

Sure! Let's solve the equation [tex]\(2y^2 = 3y + 2\)[/tex] step-by-step.

1. Set the equation to zero:
Starting with [tex]\(2y^2 = 3y + 2\)[/tex], we bring all terms to one side of the equation:
[tex]\[ 2y^2 - 3y - 2 = 0 \][/tex]

2. Identify the coefficients:
The standard form of a quadratic equation is [tex]\(ay^2 + by + c = 0\)[/tex]. Here, [tex]\(a = 2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = -2\)[/tex].

3. Use the quadratic formula:
The quadratic formula is given by:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substitute [tex]\(a = 2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = -2\)[/tex] into the formula:

[tex]\[ y = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(2)(-2)}}{2(2)} \][/tex]

4. Simplify under the square root:
[tex]\[ y = \frac{3 \pm \sqrt{9 + 16}}{4} \][/tex]
[tex]\[ y = \frac{3 \pm \sqrt{25}}{4} \][/tex]

5. Simplify the square root:
[tex]\[ y = \frac{3 \pm 5}{4} \][/tex]

6. Solve for the two possible values of y:
- When using [tex]\(+\)[/tex]:
[tex]\[ y = \frac{3 + 5}{4} = \frac{8}{4} = 2 \][/tex]
- When using [tex]\(-\)[/tex]:
[tex]\[ y = \frac{3 - 5}{4} = \frac{-2}{4} = -\frac{1}{2} \][/tex]

These give us the solutions:
[tex]\[ y = -\frac{1}{2}, 2 \][/tex]