Drag the tiles to the boxes to form correct pairs.
Match the pairs of equivalent expressions.

[tex]\[
\begin{array}{l}
1. \left(4t - \frac{8}{5}\right) - \left(3 - \frac{4}{3}t\right) \\
2. 7t - 22 \\
3. 5(2t + 1) + (-7t + 28) \\
4. \left(-\frac{9}{2}t + 3\right) + \left(\frac{7}{4}t + 33\right) \\
5. -\frac{11}{4}t + 36 \\
6. \frac{16}{3}t - \frac{23}{5} \\
7. 3(3t - 4) - (2t + 10) \\
8. 3t + 33 \\
\end{array}
\][/tex]

[tex]\[
\begin{array}{|c|c|}
\hline
\text{Expression} & \text{Equivalent Expression} \\
\hline
1 & \square \\
2 & \square \\
3 & \square \\
4 & \square \\
5 & \square \\
6 & \square \\
7 & \square \\
8 & \square \\
\hline
\end{array}
\][/tex]



Answer :

Let's pair the equivalent expressions by simplifying each one step-by-step:

1. Simplify the first expression:
[tex]\[ \left(4t - \frac{8}{5}\right) - \left(3 - \frac{4}{3}t\right) \][/tex]
This expression simplifies to:
[tex]\[ 5.33333333333333t - 4.6 \][/tex]

2. Simplify the second expression:
[tex]\[ 7t - 22 \][/tex]
This expression simplifies to:
[tex]\[ 7t - 22 \][/tex]

3. Simplify the third expression:
[tex]\[ 5(2t + 1) + (-7t + 28) \][/tex]
This expression simplifies to:
[tex]\[ 3t + 33 \][/tex]

4. Simplify the fourth expression:
[tex]\[ \left(-\frac{9}{2}t + 3\right) + \left(\frac{7}{4}t + 33\right) \][/tex]
This expression simplifies to:
[tex]\[ 36 - 2.75t \][/tex]

5. Simplify the fifth expression:
[tex]\[ -\frac{11}{4}t + 36 \][/tex]
This expression simplifies to:
[tex]\[ 36 - 2.75t \][/tex]

6. Simplify the sixth expression:
[tex]\[ \frac{16}{3}t - \frac{23}{5} \][/tex]
This expression simplifies to:
[tex]\[ 5.33333333333333t - 4.6 \][/tex]

7. Simplify the seventh expression:
[tex]\[ 3(3t - 4) - (2t + 10) \][/tex]
This expression simplifies to:
[tex]\[ 7t - 22 \][/tex]

8. Simplify the eighth expression:
[tex]\[ 3t + 33 \][/tex]
This expression simplifies to:
[tex]\[ 3t + 33 \][/tex]

Now, let's pair the equivalent expressions:

- [tex]\(\left(4t - \frac{8}{5}\right)-\left(3-\frac{4}{3}t\right)\)[/tex] simplifies to [tex]\(5.33333333333333t - 4.6\)[/tex].
- Equivalent to [tex]\(\frac{16}{3}t - \frac{23}{5}\)[/tex], which is also [tex]\(5.33333333333333t - 4.6\)[/tex].

- [tex]\(7t - 22\)[/tex] simplifies directly to [tex]\(7t - 22\)[/tex].
- Equivalent to [tex]\(3(3t - 4) - (2t + 10)\)[/tex], which is also [tex]\(7t - 22\)[/tex].

- [tex]\(5(2t + 1) + (-7t + 28)\)[/tex] simplifies to [tex]\(3t + 33\)[/tex].
- Equivalent to [tex]\(3t + 33\)[/tex].

- [tex]\(\left(-\frac{9}{2}t + 3\right) + \left(\frac{7}{4}t + 33\right)\)[/tex] simplifies to [tex]\(36 - 2.75t\)[/tex].
- Equivalent to [tex]\(-\frac{11}{4}t + 36\)[/tex], which is also [tex]\(36 - 2.75t\)[/tex].

Thus, the correct pairs are:

1. [tex]\[ \left(4t - \frac{8}{5}\right)-\left(3-\frac{4}{3}t\right) \quad \text{with} \quad \frac{16}{3}t - \frac{23}{5} \][/tex]

2. [tex]\[ 7t - 22 \quad \text{with} \quad 3(3t - 4) - (2t + 10) \][/tex]

3. [tex]\[ 5(2t + 1) + (-7t + 28) \quad \text{with} \quad 3t + 33 \][/tex]

4. [tex]\[ \left(-\frac{9}{2}t + 3\right) + \left(\frac{7}{4}t + 33\right) \quad \text{with} \quad -\frac{11}{4}t + 36 \][/tex]