What is the exact solution to the equation [tex]e^{4x-1}=3[/tex]?

A. [tex]x=\frac{\ln 3-1}{4}[/tex]
B. [tex]x=\frac{1+\ln 3}{4}[/tex]
C. [tex]x=\frac{4}{1+\ln 3}[/tex]
D. [tex]x=\frac{4}{\ln 3-1}[/tex]



Answer :

To solve the equation [tex]\( e^{4x - 1} = 3 \)[/tex], we will use logarithmic properties. Here is the step-by-step solution:

1. Start with the given equation:
[tex]\[ e^{4x - 1} = 3 \][/tex]

2. Take the natural logarithm (ln) on both sides to break the exponential:
[tex]\[ \ln(e^{4x - 1}) = \ln(3) \][/tex]

3. Use the property of logarithms [tex]\( \ln(e^y) = y \)[/tex] to simplify the left side:
[tex]\[ 4x - 1 = \ln(3) \][/tex]

4. Isolate [tex]\( x \)[/tex] by first adding 1 to both sides:
[tex]\[ 4x = \ln(3) + 1 \][/tex]

5. Then divide both sides by 4 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\ln(3) + 1}{4} \][/tex]

Therefore, the exact solution to the equation [tex]\( e^{4x - 1} = 3 \)[/tex] is:
[tex]\[ x = \frac{1 + \ln 3}{4} \][/tex]

So the correct answer from the given options is:
[tex]\[ x = \frac{1 + \ln 3}{4} \][/tex]
which corresponds to the option:
[tex]\[ x = \frac{1+\ln 3}{4} \][/tex]