Drag and drop the reasons for the steps into each box to correctly solve the equation.

[tex]\[
\log _4(20 x-10)-2 \log _4(3)=\log _4(4 x-10)
\][/tex]

Statement

1. [tex]\(\log _4(20 x-10)-\log _4\left(3^2\right)=\log _4(4 x-10)\)[/tex]

Reason: Power Property of Logarithms

2. [tex]\(\log _4\left(\frac{20 x-10}{9}\right)=\log _4(4 x-10)\)[/tex]

3. [tex]\(\frac{20 x-10}{9}=4 x-10\)[/tex]

Reason: Equality Property of Logarithms

Statement



Answer :

Sure, let's solve the equation step by step.

The given equation is:
[tex]\[ \log_4(20x - 10) - 2 \log_4(3) = \log_4(4x - 10) \][/tex]

Step 1: Apply the Power Property of Logarithms

We know that [tex]\(a \log_b(c) = \log_b(c^a)\)[/tex]. Thus, we can rewrite [tex]\(2 \log_4(3)\)[/tex] as [tex]\(\log_4(3^2)\)[/tex]:

[tex]\[ \log_4(20x - 10) - \log_4(3^2) = \log_4(4x - 10) \][/tex]

Reason for this step: Power Property of Logarithms

Step 2: Apply the Quotient Property of Logarithms

Next, we use the property of logarithms that states [tex]\(\log_b(a) - \log_b(c) = \log_b(\frac{a}{c})\)[/tex]:

[tex]\[ \log_4\left(\frac{20x - 10}{9}\right) = \log_4(4x - 10) \][/tex]

Reason for this step: Quotient Property of Logarithms

Step 3: Set the arguments of the logarithms equal to each other

Since the logarithms with the same base are equal, their arguments must also be equal:

[tex]\[ \frac{20x - 10}{9} = 4x - 10 \][/tex]

Reason for this step: If [tex]\(\log_b(a) = \log_b(c)\)[/tex], then [tex]\(a = c\)[/tex]

Step 4: Solve the equation

Now we solve the equation [tex]\(\frac{20x - 10}{9} = 4x - 10\)[/tex]:

1. Multiply both sides by 9 to clear the fraction:
[tex]\[ 20x - 10 = 9(4x - 10) \][/tex]

2. Distribute the 9 on the right-hand side:
[tex]\[ 20x - 10 = 36x - 90 \][/tex]

3. Combine like terms to isolate [tex]\(x\)[/tex]:
[tex]\[ 20x - 36x = -90 + 10 \][/tex]
[tex]\[ -16x = -80 \][/tex]

4. Divide both sides by -16:
[tex]\[ x = 5 \][/tex]

Therefore, the solution to the equation is:
[tex]\[ x = 5 \][/tex]