Answer :
To find the image of a vector under the transformation [tex]\( T \)[/tex], we need to apply the transformation [tex]\( T \)[/tex] to each given vector according to the formula:
[tex]\[ T\left(\left[\begin{array}{c}x_1 \\ x_2\end{array}\right]\right) = \left[\begin{array}{c}2 x_1 - 3 x_2 \\ -x_1 + x_2\end{array}\right] \][/tex]
Let's calculate each specified transformation step-by-step:
### Part (a)
For [tex]\( T\left(\left[\begin{array}{c}0 \\ 0\end{array}\right]\right) \)[/tex]:
[tex]\[ x_1 = 0, \quad x_2 = 0 \][/tex]
Using the transformation formula:
[tex]\[ T\left(\left[\begin{array}{c}0 \\ 0\end{array}\right]\right) = \left[\begin{array}{c}2(0) - 3(0) \\ -0 + 0\end{array}\right] = \left[\begin{array}{c}0 \\ 0\end{array}\right] \][/tex]
So, [tex]\( T\left(\left[\begin{array}{c}0 \\ 0\end{array}\right]\right) = \left[\begin{array}{c}0 \\ 0\end{array}\right] \)[/tex].
### Part (b)
For [tex]\( T\left(\left[\begin{array}{c}1 \\ 1\end{array}\right]\right) \)[/tex]:
[tex]\[ x_1 = 1, \quad x_2 = 1 \][/tex]
Using the transformation formula:
[tex]\[ T\left(\left[\begin{array}{c}1 \\ 1\end{array}\right]\right) = \left[\begin{array}{c}2(1) - 3(1) \\ -1 + 1\end{array}\right] = \left[\begin{array}{c}2 - 3 \\ -1 + 1\end{array}\right] = \left[\begin{array}{c}-1 \\ 0\end{array}\right] \][/tex]
So, [tex]\( T\left(\left[\begin{array}{c}1 \\ 1\end{array}\right]\right) = \left[\begin{array}{c}-1 \\ 0\end{array}\right] \)[/tex].
### Part (c)
For [tex]\( T\left(\left[\begin{array}{c}2 \\ 1\end{array}\right]\right) \)[/tex]:
[tex]\[ x_1 = 2, \quad x_2 = 1 \][/tex]
Using the transformation formula:
[tex]\[ T\left(\left[\begin{array}{c}2 \\ 1\end{array}\right]\right) = \left[\begin{array}{c}2(2) - 3(1) \\ -2 + 1\end{array}\right] = \left[\begin{array}{c}4 - 3 \\ -2 + 1\end{array}\right] = \left[\begin{array}{c}1 \\ -1\end{array}\right] \][/tex]
So, [tex]\( T\left(\left[\begin{array}{c}2 \\ 1\end{array}\right]\right) = \left[\begin{array}{c}1 \\ -1\end{array}\right] \)[/tex].
### Part (d)
For [tex]\( T\left(\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) \)[/tex]:
[tex]\[ x_1 = -1, \quad x_2 = 0 \][/tex]
Using the transformation formula:
[tex]\[ T\left(\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) = \left[\begin{array}{c}2(-1) - 3(0) \\ -(-1) + 0\end{array}\right] = \left[\begin{array}{c}-2 - 0 \\ 1 + 0\end{array}\right] = \left[\begin{array}{c}-2 \\ 1\end{array}\right] \][/tex]
So, [tex]\( T\left(\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) = \left[\begin{array}{c}-2 \\ 1\end{array}\right] \)[/tex].
### Summary
The results for each part are:
(a) [tex]\( T\left(\left[\begin{array}{c}0 \\ 0\end{array}\right]\right) = \left[\begin{array}{c}0 \\ 0\end{array}\right] \)[/tex]
(b) [tex]\( T\left(\left[\begin{array}{c}1 \\ 1\end{array}\right]\right) = \left[\begin{array}{c}-1 \\ 0\end{array}\right] \)[/tex]
(c) [tex]\( T\left(\left[\begin{array}{c}2 \\ 1\end{array}\right]\right) = \left[\begin{array}{c}1 \\ -1\end{array}\right] \)[/tex]
(d) [tex]\( T\left(\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) = \left[\begin{array}{c}-2 \\ 1\end{array}\right] \)[/tex]
[tex]\[ T\left(\left[\begin{array}{c}x_1 \\ x_2\end{array}\right]\right) = \left[\begin{array}{c}2 x_1 - 3 x_2 \\ -x_1 + x_2\end{array}\right] \][/tex]
Let's calculate each specified transformation step-by-step:
### Part (a)
For [tex]\( T\left(\left[\begin{array}{c}0 \\ 0\end{array}\right]\right) \)[/tex]:
[tex]\[ x_1 = 0, \quad x_2 = 0 \][/tex]
Using the transformation formula:
[tex]\[ T\left(\left[\begin{array}{c}0 \\ 0\end{array}\right]\right) = \left[\begin{array}{c}2(0) - 3(0) \\ -0 + 0\end{array}\right] = \left[\begin{array}{c}0 \\ 0\end{array}\right] \][/tex]
So, [tex]\( T\left(\left[\begin{array}{c}0 \\ 0\end{array}\right]\right) = \left[\begin{array}{c}0 \\ 0\end{array}\right] \)[/tex].
### Part (b)
For [tex]\( T\left(\left[\begin{array}{c}1 \\ 1\end{array}\right]\right) \)[/tex]:
[tex]\[ x_1 = 1, \quad x_2 = 1 \][/tex]
Using the transformation formula:
[tex]\[ T\left(\left[\begin{array}{c}1 \\ 1\end{array}\right]\right) = \left[\begin{array}{c}2(1) - 3(1) \\ -1 + 1\end{array}\right] = \left[\begin{array}{c}2 - 3 \\ -1 + 1\end{array}\right] = \left[\begin{array}{c}-1 \\ 0\end{array}\right] \][/tex]
So, [tex]\( T\left(\left[\begin{array}{c}1 \\ 1\end{array}\right]\right) = \left[\begin{array}{c}-1 \\ 0\end{array}\right] \)[/tex].
### Part (c)
For [tex]\( T\left(\left[\begin{array}{c}2 \\ 1\end{array}\right]\right) \)[/tex]:
[tex]\[ x_1 = 2, \quad x_2 = 1 \][/tex]
Using the transformation formula:
[tex]\[ T\left(\left[\begin{array}{c}2 \\ 1\end{array}\right]\right) = \left[\begin{array}{c}2(2) - 3(1) \\ -2 + 1\end{array}\right] = \left[\begin{array}{c}4 - 3 \\ -2 + 1\end{array}\right] = \left[\begin{array}{c}1 \\ -1\end{array}\right] \][/tex]
So, [tex]\( T\left(\left[\begin{array}{c}2 \\ 1\end{array}\right]\right) = \left[\begin{array}{c}1 \\ -1\end{array}\right] \)[/tex].
### Part (d)
For [tex]\( T\left(\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) \)[/tex]:
[tex]\[ x_1 = -1, \quad x_2 = 0 \][/tex]
Using the transformation formula:
[tex]\[ T\left(\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) = \left[\begin{array}{c}2(-1) - 3(0) \\ -(-1) + 0\end{array}\right] = \left[\begin{array}{c}-2 - 0 \\ 1 + 0\end{array}\right] = \left[\begin{array}{c}-2 \\ 1\end{array}\right] \][/tex]
So, [tex]\( T\left(\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) = \left[\begin{array}{c}-2 \\ 1\end{array}\right] \)[/tex].
### Summary
The results for each part are:
(a) [tex]\( T\left(\left[\begin{array}{c}0 \\ 0\end{array}\right]\right) = \left[\begin{array}{c}0 \\ 0\end{array}\right] \)[/tex]
(b) [tex]\( T\left(\left[\begin{array}{c}1 \\ 1\end{array}\right]\right) = \left[\begin{array}{c}-1 \\ 0\end{array}\right] \)[/tex]
(c) [tex]\( T\left(\left[\begin{array}{c}2 \\ 1\end{array}\right]\right) = \left[\begin{array}{c}1 \\ -1\end{array}\right] \)[/tex]
(d) [tex]\( T\left(\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right) = \left[\begin{array}{c}-2 \\ 1\end{array}\right] \)[/tex]