What is this expression in simplified form?
[tex] (\sqrt{22})(5 \sqrt{2}) [/tex]

A. [tex]10 \sqrt{11}[/tex]
B. [tex]12 \sqrt{11}[/tex]
C. [tex]20 \sqrt{11}[/tex]
D. [tex]24 \sqrt{11}[/tex]



Answer :

To simplify the given expression, [tex]\((\sqrt{22})(5 \sqrt{2})\)[/tex], we will proceed through several steps:

1. Combine the constants and the square root parts separately:
[tex]\[ \sqrt{22} \times 5 \sqrt{2} = 5 \times (\sqrt{22} \times \sqrt{2}) \][/tex]

2. Use the property of square roots:
The property [tex]\(\sqrt{a} \times \sqrt{b} = \sqrt{a \times b}\)[/tex] allows us to combine the square roots:
[tex]\[ \sqrt{22} \times \sqrt{2} = \sqrt{22 \times 2} \][/tex]

3. Perform the multiplication inside the square root:
[tex]\[ 22 \times 2 = 44 \][/tex]
So, the expression becomes:
[tex]\[ 5 \times \sqrt{44} \][/tex]

4. Simplify [tex]\(\sqrt{44}\)[/tex] further:
Notice that [tex]\(44\)[/tex] can be factored into [tex]\(4 \times 11\)[/tex], thus:
[tex]\[ \sqrt{44} = \sqrt{4 \times 11} = \sqrt{4} \times \sqrt{11} = 2 \sqrt{11} \][/tex]

5. Substitute back and multiply the values:
[tex]\[ 5 \times \sqrt{44} = 5 \times (2 \sqrt{11}) = 10 \sqrt{11} \][/tex]

Thus, the simplified form of the given expression [tex]\((\sqrt{22})(5 \sqrt{2})\)[/tex] is:
[tex]\[ 10 \sqrt{11} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{10 \sqrt{11}} \][/tex]

The choice corresponds to:
A. [tex]\(10 \sqrt{11}\)[/tex]