Given the functions [tex]f(n) = 25[/tex] and [tex]g(n) = 3(n-1)[/tex], combine them to create an arithmetic sequence [tex]a_n[/tex], and solve for the 12th term.

[tex]a_n = 25 - 3(n-1)[/tex]

Solve for [tex]a_{12}[/tex].



Answer :

Certainly! Let's solve this problem step-by-step together.

The problem asks us to combine the two functions, [tex]\( f(n) \)[/tex] and [tex]\( g(n) \)[/tex], to create an arithmetic sequence [tex]\( a(n) \)[/tex]. Then, we need to find the 12th term of this sequence.

1. Start with the given functions:
- [tex]\( f(n) = 25 \)[/tex]
- [tex]\( g(n) = 3(n - 1) \)[/tex]

2. Combine these functions to form the sequence [tex]\( a(n) \)[/tex]. The sequence formula is given by:
[tex]\[ a(n) = f(n) - g(n) \][/tex]

3. Substitute the expressions for [tex]\( f(n) \)[/tex] and [tex]\( g(n) \)[/tex] into the formula:
[tex]\[ a(n) = 25 - 3(n - 1) \][/tex]

4. Simplify the expression inside the sequence formula.
[tex]\[ a(n) = 25 - 3(n - 1) \][/tex]
Distribute the 3 inside the parentheses:
[tex]\[ a(n) = 25 - 3n + 3 \][/tex]
Combine like terms:
[tex]\[ a(n) = 28 - 3n \][/tex]

5. Now, we need to find the 12th term, denoted as [tex]\( a(12) \)[/tex].

6. Substitute [tex]\( n = 12 \)[/tex] into the formula for the sequence [tex]\( a(n) \)[/tex]:
[tex]\[ a(12) = 28 - 3(12) \][/tex]

7. Calculate the value:
[tex]\[ a(12) = 28 - 36 \][/tex]
[tex]\[ a(12) = -8 \][/tex]

So, the 12th term of the sequence is [tex]\( -8 \)[/tex].