The most useful aspect of completing the square is being able to write an equation in the vertex form [tex] y = a(x-h)^2 + k [/tex]. Given [tex] 0 = x^2 + x - 20 [/tex], fill in the steps for completing the square.

[tex]\[
\begin{array}{l}
20 + \square = x^2 + x + \square \\
x = -\frac{1}{2} \\
x = \square
\end{array}
\][/tex]



Answer :

Sure, let’s complete the square for the equation [tex]\( 0 = x^2 + x - 20 \)[/tex].

1. Move the constant term to the other side:
[tex]\[ x^2 + x = 20 \][/tex]

2. To complete the square, take half of the coefficient of [tex]\( x \)[/tex], square it, and add it to both sides of the equation.
- The coefficient of [tex]\( x \)[/tex] is 1.
- Half of it is [tex]\( \frac{1}{2} \)[/tex].
- Squaring it gives [tex]\( \left(\frac{1}{2}\right)^2 = \frac{1}{4} \)[/tex].

3. Add [tex]\( \frac{1}{4} \)[/tex] to both sides:
[tex]\[ x^2 + x + \frac{1}{4} = 20 + \frac{1}{4} \][/tex]

4. Now the left side is a perfect square trinomial and can be written as:
[tex]\[ \left(x + \frac{1}{2}\right)^2 = 20.25 \][/tex]

5. Take the square root of both sides:
[tex]\[ x + \frac{1}{2} = \pm \sqrt{20.25} \][/tex]

6. Simplify the square root:
[tex]\[ x + \frac{1}{2} = \pm 4.5 \][/tex]

7. Isolate [tex]\( x \)[/tex] by subtracting [tex]\( \frac{1}{2} \)[/tex] from both sides:
[tex]\[ x = -\frac{1}{2} \pm 4.5 \][/tex]

8. Solve for both possible values of [tex]\( x \)[/tex]:
- [tex]\( x_1 = -\frac{1}{2} + 4.5 = 4.0 \)[/tex]
- [tex]\( x_2 = -\frac{1}{2} - 4.5 = -5.0 \)[/tex]

Therefore, [tex]\( x = 4.0 \)[/tex] and [tex]\( x = -5.0 \)[/tex].

Putting the equation in the completed-square form [tex]\(20 + \square = x^2 + x + \square\)[/tex], your answers are:

[tex]\[ \begin{array}{l} 20 + \frac{1}{4} = x^2 + x + \frac{1}{4} \\ x = -5 \\ x = 4 \end{array} \][/tex]