Given the piecewise function:

[tex]\[
f(x)=\left\{
\begin{array}{cc}
x^2 & \text{if } x \leq 3 \\
2x - 4 & \text{if } x \ \textgreater \ 3
\end{array}
\right\}
\][/tex]

If [tex]\( x = -4 \)[/tex], then [tex]\( f(x) = \square \)[/tex]

Answer: [tex]\( \square \)[/tex]



Answer :

To find the value of [tex]\( f(x) \)[/tex] when [tex]\( x = -4 \)[/tex], we need to determine which piece of the piecewise function to use based on the given value of [tex]\( x \)[/tex].

The piecewise function is defined as:
[tex]\[ f(x) = \begin{cases} x^2 & \text{if } x \leq 3 \\ 2x - 4 & \text{if } x > 3 \end{cases} \][/tex]

Given [tex]\( x = -4 \)[/tex]:

1. We observe that [tex]\(-4 \leq 3\)[/tex].
2. Since [tex]\(-4\)[/tex] is less than or equal to [tex]\(3\)[/tex], we use the first part of the piecewise function, which is [tex]\( f(x) = x^2 \)[/tex].

Now, we substitute [tex]\( x = -4 \)[/tex] into this part of the function:

[tex]\[ f(-4) = (-4)^2 \][/tex]

Calculating the square of [tex]\(-4\)[/tex]:

[tex]\[ (-4)^2 = 16 \][/tex]

Thus:

[tex]\[ f(-4) = 16 \][/tex]

Therefore, the value of [tex]\( f(x) \)[/tex] when [tex]\( x = -4 \)[/tex] is [tex]\( \boxed{16} \)[/tex].