The perimeter of a rectangle is 38 inches. If the length is 3 inches more than the width, find the width.

A. 8 inches
B. 9.4 inches
C. 11 inches
D. 17.5 inches



Answer :

To solve for the width of a rectangle when given the perimeter and a relationship between the length and width, follow these steps:

1. Understand the given values:
- Perimeter of the rectangle is 38 inches.
- Length of the rectangle is 3 inches more than the width.

2. Define the variables:
- Let the width be [tex]\( w \)[/tex].
- The length will be [tex]\( w + 3 \)[/tex].

3. Use the perimeter formula for a rectangle:
- The formula for the perimeter [tex]\( P \)[/tex] of a rectangle is:
[tex]\[ P = 2 \times (\text{Length} + \text{Width}) \][/tex]

4. Substitute the known values into the formula:
- Given [tex]\( P = 38 \)[/tex], and the length is [tex]\( w + 3 \)[/tex], the formula becomes:
[tex]\[ 38 = 2 \times (w + (w + 3)) \][/tex]

5. Simplify the equation:
- First, combine like terms inside the parentheses:
[tex]\[ 38 = 2 \times (2w + 3) \][/tex]

- Next, distribute the 2:
[tex]\[ 38 = 4w + 6 \][/tex]

6. Solve for [tex]\( w \)[/tex]:
- Isolate [tex]\( 4w \)[/tex] by subtracting 6 from both sides:
[tex]\[ 38 - 6 = 4w \][/tex]
[tex]\[ 32 = 4w \][/tex]

- Divide both sides by 4:
[tex]\[ w = \frac{32}{4} \][/tex]
[tex]\[ w = 8 \][/tex]

Thus, the width of the rectangle is 8 inches.