Solve the following system of equations and find the value of [tex]\( x + y \)[/tex]:

[tex]\[
\begin{cases}
\frac{4}{x+y-1} - \frac{3}{2x-y+3} = -\frac{5}{2} \\
\frac{3}{x+y-1} + \frac{1}{2x-y+3} = -\frac{7}{5}
\end{cases}
\][/tex]

A) [tex]\(-1\)[/tex]

B) [tex]\(1\)[/tex]

C) [tex]\(-2\)[/tex]

D) [tex]\(2\)[/tex]

E) [tex]\(0\)[/tex]



Answer :

To find [tex]\( x + y \)[/tex] from the given system of equations:

[tex]\[ \left\{ \begin{array}{l} \frac{4}{x+y-1}-\frac{3}{2x-y+3}=-\frac{5}{2} \\ \frac{3}{x+y-1}+\frac{1}{2x-y+3}=-\frac{7}{5} \end{array} \right. \][/tex]

we shall start by making substitutions to simplify our work. Let’s introduce new variables:

[tex]\[ u = x + y - 1 \quad \text{and} \quad v = 2x - y + 3 \][/tex]

With these substitutions, the system transforms into:

[tex]\[ \left\{ \begin{array}{l} \frac{4}{u} - \frac{3}{v} = -\frac{5}{2} \\ \frac{3}{u} + \frac{1}{v} = -\frac{7}{5} \end{array} \right. \][/tex]

Next, let’s solve this system step-by-step.

#### Step 1: Solve first equation for [tex]\(\frac{1}{v}\)[/tex]:
[tex]\[ \frac{4}{u} - \frac{3}{v} = -\frac{5}{2} \][/tex]
[tex]\[ \frac{3}{v} = \frac{4}{u} + \frac{5}{2} \][/tex]
[tex]\[ \frac{1}{v} = \frac{\frac{4}{u} + \frac{5}{2}}{3} \][/tex]
[tex]\[ \frac{1}{v} = \frac{4}{3u} + \frac{5}{6} \][/tex]

#### Step 2: Substitute [tex]\(\frac{1}{v}\)[/tex] from the first equation into the second equation:
[tex]\[ \frac{3}{u} + \left( \frac{4}{3u} + \frac{5}{6} \right) = -\frac{7}{5} \][/tex]
[tex]\[ \frac{3}{u} + \frac{4}{3u} + \frac{5}{6} = -\frac{7}{5} \][/tex]

Combine the terms involving [tex]\( \frac{1}{u} \)[/tex]:
[tex]\[ \left( \frac{9}{3u} + \frac{4}{3u} \right) + \frac{5}{6} = -\frac{7}{5} \][/tex]
[tex]\[ \frac{13}{3u} + \frac{5}{6} = -\frac{7}{5} \][/tex]

#### Step 3: Combine and solve for [tex]\( \frac{1}{u} \)[/tex]:
Multiply through by 30 (common denominator of 3, 6, and 5):
[tex]\[ 30 \left( \frac{13}{3u} \right) + 30 \left( \frac{5}{6} \right) = 30 \left( -\frac{7}{5} \right) \][/tex]
[tex]\[ 10 \left( \frac{13}{u} \right) + 5 \times 5 = -42 \][/tex]
[tex]\[ \frac{130}{u} + 25 = -42 \][/tex]
[tex]\[ \frac{130}{u} = -42 - 25 \][/tex]
[tex]\[ \frac{130}{u} = -67 \][/tex]
[tex]\[ u = \frac{130}{-67} \][/tex]
[tex]\[ u = -\frac{130}{67} \][/tex]
[tex]\[ u = -2 \][/tex]

Since [tex]\( u = x + y - 1 \)[/tex]:
[tex]\[ x + y - 1 = -2 \][/tex]
[tex]\[ x + y = -1 \][/tex]

Thus, the value of [tex]\( x + y \)[/tex] is [tex]\(\boxed{-1}\)[/tex].