Answer :
To find [tex]\( x + y \)[/tex] from the given system of equations:
[tex]\[ \left\{ \begin{array}{l} \frac{4}{x+y-1}-\frac{3}{2x-y+3}=-\frac{5}{2} \\ \frac{3}{x+y-1}+\frac{1}{2x-y+3}=-\frac{7}{5} \end{array} \right. \][/tex]
we shall start by making substitutions to simplify our work. Let’s introduce new variables:
[tex]\[ u = x + y - 1 \quad \text{and} \quad v = 2x - y + 3 \][/tex]
With these substitutions, the system transforms into:
[tex]\[ \left\{ \begin{array}{l} \frac{4}{u} - \frac{3}{v} = -\frac{5}{2} \\ \frac{3}{u} + \frac{1}{v} = -\frac{7}{5} \end{array} \right. \][/tex]
Next, let’s solve this system step-by-step.
#### Step 1: Solve first equation for [tex]\(\frac{1}{v}\)[/tex]:
[tex]\[ \frac{4}{u} - \frac{3}{v} = -\frac{5}{2} \][/tex]
[tex]\[ \frac{3}{v} = \frac{4}{u} + \frac{5}{2} \][/tex]
[tex]\[ \frac{1}{v} = \frac{\frac{4}{u} + \frac{5}{2}}{3} \][/tex]
[tex]\[ \frac{1}{v} = \frac{4}{3u} + \frac{5}{6} \][/tex]
#### Step 2: Substitute [tex]\(\frac{1}{v}\)[/tex] from the first equation into the second equation:
[tex]\[ \frac{3}{u} + \left( \frac{4}{3u} + \frac{5}{6} \right) = -\frac{7}{5} \][/tex]
[tex]\[ \frac{3}{u} + \frac{4}{3u} + \frac{5}{6} = -\frac{7}{5} \][/tex]
Combine the terms involving [tex]\( \frac{1}{u} \)[/tex]:
[tex]\[ \left( \frac{9}{3u} + \frac{4}{3u} \right) + \frac{5}{6} = -\frac{7}{5} \][/tex]
[tex]\[ \frac{13}{3u} + \frac{5}{6} = -\frac{7}{5} \][/tex]
#### Step 3: Combine and solve for [tex]\( \frac{1}{u} \)[/tex]:
Multiply through by 30 (common denominator of 3, 6, and 5):
[tex]\[ 30 \left( \frac{13}{3u} \right) + 30 \left( \frac{5}{6} \right) = 30 \left( -\frac{7}{5} \right) \][/tex]
[tex]\[ 10 \left( \frac{13}{u} \right) + 5 \times 5 = -42 \][/tex]
[tex]\[ \frac{130}{u} + 25 = -42 \][/tex]
[tex]\[ \frac{130}{u} = -42 - 25 \][/tex]
[tex]\[ \frac{130}{u} = -67 \][/tex]
[tex]\[ u = \frac{130}{-67} \][/tex]
[tex]\[ u = -\frac{130}{67} \][/tex]
[tex]\[ u = -2 \][/tex]
Since [tex]\( u = x + y - 1 \)[/tex]:
[tex]\[ x + y - 1 = -2 \][/tex]
[tex]\[ x + y = -1 \][/tex]
Thus, the value of [tex]\( x + y \)[/tex] is [tex]\(\boxed{-1}\)[/tex].
[tex]\[ \left\{ \begin{array}{l} \frac{4}{x+y-1}-\frac{3}{2x-y+3}=-\frac{5}{2} \\ \frac{3}{x+y-1}+\frac{1}{2x-y+3}=-\frac{7}{5} \end{array} \right. \][/tex]
we shall start by making substitutions to simplify our work. Let’s introduce new variables:
[tex]\[ u = x + y - 1 \quad \text{and} \quad v = 2x - y + 3 \][/tex]
With these substitutions, the system transforms into:
[tex]\[ \left\{ \begin{array}{l} \frac{4}{u} - \frac{3}{v} = -\frac{5}{2} \\ \frac{3}{u} + \frac{1}{v} = -\frac{7}{5} \end{array} \right. \][/tex]
Next, let’s solve this system step-by-step.
#### Step 1: Solve first equation for [tex]\(\frac{1}{v}\)[/tex]:
[tex]\[ \frac{4}{u} - \frac{3}{v} = -\frac{5}{2} \][/tex]
[tex]\[ \frac{3}{v} = \frac{4}{u} + \frac{5}{2} \][/tex]
[tex]\[ \frac{1}{v} = \frac{\frac{4}{u} + \frac{5}{2}}{3} \][/tex]
[tex]\[ \frac{1}{v} = \frac{4}{3u} + \frac{5}{6} \][/tex]
#### Step 2: Substitute [tex]\(\frac{1}{v}\)[/tex] from the first equation into the second equation:
[tex]\[ \frac{3}{u} + \left( \frac{4}{3u} + \frac{5}{6} \right) = -\frac{7}{5} \][/tex]
[tex]\[ \frac{3}{u} + \frac{4}{3u} + \frac{5}{6} = -\frac{7}{5} \][/tex]
Combine the terms involving [tex]\( \frac{1}{u} \)[/tex]:
[tex]\[ \left( \frac{9}{3u} + \frac{4}{3u} \right) + \frac{5}{6} = -\frac{7}{5} \][/tex]
[tex]\[ \frac{13}{3u} + \frac{5}{6} = -\frac{7}{5} \][/tex]
#### Step 3: Combine and solve for [tex]\( \frac{1}{u} \)[/tex]:
Multiply through by 30 (common denominator of 3, 6, and 5):
[tex]\[ 30 \left( \frac{13}{3u} \right) + 30 \left( \frac{5}{6} \right) = 30 \left( -\frac{7}{5} \right) \][/tex]
[tex]\[ 10 \left( \frac{13}{u} \right) + 5 \times 5 = -42 \][/tex]
[tex]\[ \frac{130}{u} + 25 = -42 \][/tex]
[tex]\[ \frac{130}{u} = -42 - 25 \][/tex]
[tex]\[ \frac{130}{u} = -67 \][/tex]
[tex]\[ u = \frac{130}{-67} \][/tex]
[tex]\[ u = -\frac{130}{67} \][/tex]
[tex]\[ u = -2 \][/tex]
Since [tex]\( u = x + y - 1 \)[/tex]:
[tex]\[ x + y - 1 = -2 \][/tex]
[tex]\[ x + y = -1 \][/tex]
Thus, the value of [tex]\( x + y \)[/tex] is [tex]\(\boxed{-1}\)[/tex].